ILC Injector

ILC Summer Camp at Toyama Kureha-heights 2013/7/20-23 Masao KURIKI (Hiroshima/KEK)

ILC injector

- Electron source
- Positron source
- Summary

Role of the Injector

Role of the injector is providing accelerat-able beam to the main linac.

Omori-san

Kubo-san

- Sources: generates electrons and positrons.
- Booster : boost up the beam for DR injection.
- DR: store the beam for the radiation damping.
- BC: compress the bunch length before the main linac.

Electron and Positron Generation

Polarized Electron : Photo-electron effect from GaAs cathode with circulary polarized laser.
(Polarized) Positron: Pair creation from Gamma ray in material. Several concepts have been proposed.

Importance of Polarzation

- Electron/Positron is spin ½ fermion. Two eigen states.
- Two spin states are belong to different doublet (singlet) in SU(2)xU(1).

$$e_R \qquad I_W = 2, I_W = 1$$

 $e_R \qquad I_W = 0, Y_W = -2$

 $l_L \equiv \begin{pmatrix} V_{eL} \end{pmatrix} \qquad I_{eL} = \begin{pmatrix} V_{eL} \end{pmatrix} = I_{eL} = I_{eL} = I_{eL}$

- Well defined initial states are essential for LC.
- Spin must be aligned (polarized) in LC.

$$P \equiv \frac{N_R - N_L}{N_R + N_L}$$

Additional enhancement from Positron Polarization

ILC electron source

GaAs photo-cathode

E. Direct Transition at Γ point. Conduction Band : $J=|1/2,\pm 1/2>$ $W_{i\to f} = \frac{2\pi}{\hbar} M^2 D(h\omega) f(E)$ M: Matrix element. D: Combined states of density. • f: Distribution function. Photon: $J = |1, \pm 1\rangle$ Ebg M~Clebsh-Gordon coeff. k $\left(\frac{1}{2,\frac{1}{2}}\right) = \frac{\sqrt{3}}{2}(1,-1)\left(\frac{3}{2,\frac{3}{2}}\right) + \frac{1}{2}(1,1)\left(\frac{3}{2,-\frac{1}{2}}\right)$ Valence Band: 、 hh $J = |3/2, \pm 3/2 \pm 1/2 > \square$ $\left(\frac{1}{2} - \frac{1}{2}\right) = \frac{\sqrt{3}}{2}(1,1)\left(\frac{3}{2} - \frac{3}{2}\right) + \frac{1}{2}(1,-1)\left(\frac{3}{2},\frac{1}{2}\right)$ 50

Polarized Electron

- Degenerate : 50% pol.
- Non degenerate: 100% pol. •
- Strain and/or super-lattice • Crystal.

Strain Axis Parallel to

Performance of GaAs/GaAsP superlattice

ILC Electron Source

- NEA GaAs photo-cathode DC electron gun.
- Bunching by SHB.
- 76 MeV NC accelerator + 5 GeV SC booster.
- Spin rotator and energy compressor.

Parametersn	Nominal
Pulse length	730µs
Pulse repetition	10 Hz (5Hz for e+)
# of bunches in a pulse	1312
Bunch interval	554 ns
Bunch charge	3.2 nC
Bunch length (at Gun)	1ns (full width)
Bunch length (at IP)	300 μm (1ps, rms)
Beam Polarization	>80%

DC Photo-cathode Gun

- Photo-electron emission from NEA GaAs cathode with Circularily polarized laser
- 200kV DC extraction field.
- Current density is limted by space chage. 3.2nC is extracted in 1ns duration.

Electron Drive Laser

- Electron beam driver in macro pulse format.
- Wavelength tunability for optimum polarization is implemented by $Ti:Al_2O_3$ mode lock + 3MHz pulse picker.
- Amplification with Ti:Al₂O₃ regenerative amplifier.

Bunching

For good acceleation by RF field, the beam is concentrated in a small phase area.
Bunching: shorten the bunch length.
Velocity modulation.

RF voltage (Energy)

Velocity Bunching

Velocity modulation within a bunch. Tail is accelerated and head is decelerated.

Modulation is made by RF cavity.

Electron Injector Summary

GaAs/GaAsP

Injetor/Booster

Buncher

Spin Rotators

Damping Ring

2013ILC夏の合宿(富山)

11/05/12

Positron Source

Positron Generation

 No stable positron in the nature. Positron is generated by

 β⁺ decay
 Pair-creation

 Only pair creation is applicable for positron in bunched format.

Pair-creation

Photon material interaction

<1MeV:Photo-electron)
1-10MeV:Compton
>10MeV: Pair-creation

>10MeV gamma ray for efficient pair-creation.

σp.e. : photo-electronσcompton:Compton scatteringKnuc, Ke: pair creation(from Particle Data Group, http://pdg.lbl.gov)

EM shower

- Interactions with E>100 MeV electrons:
 - Bremsstrahlung
 - Electron excitation
 - Pair creation,
 - Compton scattering,
 - Electrons, positrons, and gamma flux : EM shower

EM shower (2)

• EM shower evolution is characterized by radiation length X₀.

 $X_0 = \frac{716.4[g.\,cm^{-2}]A}{Z(Z+1)\log\frac{287}{\sqrt{z}}}$

Large z is better for efficient shower development.

T.Kamitani

Non Shower Regime

- 10s MeV photon (gamma) causes pair-creation in material.
- No shower development (no multiplication).
 - Due to the simplicity, the positron inherite the photon helicity; The polarized positron is generated if the photons are polarized.

ILC Positron Source

- Three concepts (Electron driven, undulator, and laser Compton) have been proposed.
- Undulator method is the baseline, other methods are back-ups.
- It is difficult to demonstrate the technical feasibility of the undulator scheme prior to the real LC construction.

Electron Driven Scheme (1)

- Several GeV drive beam impinges on W-Re target.
- Due to the high energy density, target vitality is issue.
- If the beam format is identical to the nominal ILC (5554ns, 3.2nC), the target should be rotated with 400m/s tangential speed.

400m/s to several m/s

Undulator Scheme

- γ ray (>10MeV) is generated by undulator radiation with electron beam more than 130 GeV energy.
- Employing helical undulator, generated positron is polarized.
- Several technical issues + potential risks.

Polarized Positron

- γ-ray Polarization depends on its energy and angle.
- Taking super-forward high energy γ-ray, polarized g-ray is obtained.

$$\frac{dN_n}{dE} \left[\frac{1}{MeV} \right] = \frac{10^6 e^3 L}{4 \pi \epsilon c^2 h^2} \frac{K^2}{\gamma^2} \left[J'_n(x)^2 + \left(\frac{\alpha_n}{K} - \frac{n}{x} \right)^2 J_n(x)^2 \right]$$
$$\theta = \frac{1}{\gamma} \sqrt{n} \frac{\omega_n (1+K^2)}{\omega} - 1 - K^2$$

Real Operation

Helical Undulator

Multi-wire winding model in Opera 3d

Effects on the electron beam

Drive beam energy	Energy lost per 100m	Energy lost for 1.5 yield	
50GeV	~225MeV	N/A	1
100GeV	~900MeV	~9.9GeV	4
150GeV	~2GeV	~4.6GeV	
200GeV	~3.6GeV	~3.7GeV	
250GeV	~5.6GeV	~3.96GeV	
and the second		a De Astrica	
Drive beam	Viald	Dolorization	
energy	neiu	Polanzation	
energy 50GeV	0.0041	0.403	
energy 50GeV 100GeV	0.0041 0.3138	0.403 0.373	and the second
energy 50GeV 100GeV 150GeV	0.0041 0.3138 1.572	0.403 0.373 0.314	
energy 50GeV 100GeV 150GeV 200GeV	0.0041 0.3138 1.572 3.298	0.403 0.373 0.314 0.265	
energy 50GeV 100GeV 150GeV 200GeV 250GeV	0.0041 0.3138 1.572 3.298 4.898	0.403 0.373 0.314 0.265 0.221	

Electron Energy at the IP (GeV)

Positron Generation

- 15mm Ti-all
- 100m/s tang
- 6月1日(土) There is no • E3系からE6系・ optimizatior Same speed as E6 wheel in vacuum ! structure is t

Vater Unio

Thechnical design of the water joint and vacuum seal.

2013ILC夏の合宿(富山)

Ferrofluid

arget Wheel / Surro

Positron Capture

- Generated positrons have wide angle spread. It should be focused for further acceleration. Capture devices are:
 - QWT (Quarter Wave Transformer)
 - AMD (Adiabatic Matching Device)

Conversion Target

Devide

Solenoid like B-field.

Transverse momentum is compensated by adiabatic condition.
Strong B-field is generated by eddy-current.
1ms long pulse generation is challenging.

Path Length Condition

11/05/12

Laser Compton(1)

Inverse Compton scattering between laser photon and electron beam.

Laser photon is boosted by high energy electron.

Laser Compton with Ring

E-driver can be a few GeV (dedicated) + polarization. The positron yield from one collision is not sufficient. Electron and photon recycling + positron accumulation.

Pulse Stacking Cavity

The cavity optical path has to satisfy two conditions simultaneously;

$$L_{cav} = m\frac{\pi}{2} \qquad L_{cav} = nCT_M$$

The many pulse is stacked and amplitude is enhanced until loss in the cavity is equal to one laser pulse.
10000 enhancement in design which requires sub-nm cavity control.

ILC Positron Source Summary

- Electron driven is the most feasible from a technical point of view, but no polarization.
- Undulator scheme maybe feasible, but concerns about
 - Non conventional undulator
 - Operation (availability) : small aperture, 200 m length
 - No established design on the production target.
- Laser Compton is challenging:
 - The system works only if all of the critical components works well.
- Realistic scenario : start with the un-polarized positron and upgrade to one of the polarized positron eventually.

Summary

- ILC electron and positron sources are explained.
- 80% polarized electron is generated by NEA GaAs photocathode.
- One baseline design (undulator scheme) and two back-ups for ILC positron source.
- A staging scenario not only for CME, but also for the positron source is desirable.