衝突型加速器実験

竹下徹 (信州大) ILC夏の合宿@富山2013

- → 目的:何を測る
- ∾ 企画: どう測る
- ~ 装置:どんなものを作る
- ∾ どう作る
- ~ 測定

~ 物理成果

- ◆ 目的:何を測る
 ◆ 目的:Higgs 結合定数
- ◇ 企画: どう測る
 ◇ 企画: Higgs 崩壊判別
- → 装置:どんなものを作る → 装置:加速器と測定器
- ∾ どう作る

~ どう作る

~ 物理成果

~ 測定

- ~ 測定
- ~ 物理成果

- ~ 目的:何を測る ~ 目的:Higgs 結合定数
- ◇ 企画: どう測る
 ◇ 企画: Higgs 崩壊判別
- ~ 装置:どんなものを作る ~ 装置:加速器と測定器
- ∾ どう作る

∾ どう作る

~ 物理成果

~ 測定

- ~ 測定
- ~ 物理成果

- ~ 目的:何を測る ~ 目的:Higgs 結合定数
- ◇ 企画: どう測る
 ◇ 企画: Higgs 崩壊判別
- ◆ 装置:どんなものを作る [◆] 装置:加速器と測定器
 ◆ どう作る [◆] どう作る
 ◆ 測定 [◆] 測定
 ◆ 物理成果 [◆] 物理成果 [◆] 物理成果

- ◆ 目的:何を測る
 ◆ 目的:Higgs 結合定数
- ◇ 企画: どう測る
 ◇ 企画: Higgs 崩壊判別
- ~ 装置:どんなものを作る ~ 装置:加速器と測定器

◆ なぜ beam - beam 衝突 という 技術的に 困難な方法を取るのか?

衝突型加速器 colliders

陽子衝突と電子陽電子衝突

- □ 衝突は1個同士でおこる
- 喝子は複数のquarkの集まり
- □ 1個のエネルギー?1/3以下
- Epは大きい:TeV

電子は素粒子:エネルギーknown
 全エネルギーが衝突に使われる
 Eeは大きくない

ルミノシティー
$$Yield = \mathcal{L}\sigma$$

衝突型実験の最重要パラメータ
Luminosity $\pounds = \frac{Y}{2} \propto \frac{N^2 f}{2}$

Y: Yield 単位時間に事象が生成される数: 1/s σ: cross section 事象の断面積: cm² σ物理 N: beam中の粒子数 f: beamの衝突頻度: 1/s f_{ILC}=5 Sx,Sy: beamの広がり: cm

7

()

 $S_x S_y$

生成粒子数 $Yield = \mathcal{L}\sigma$

ILC:電子陽電子衝突

S . .

- ~ 電子反電子対消滅
- ~ 初期状態を忘れて s が残る
- ~ 衝突前の全てのエネルギー利用
- ※ 終状態:スピン1状態を生成:s-channel
 ※
- → 対生成=ff, ZH,WW
- ~ 偏極:電子のスピンをそろえる:終状態を選ぶ

→ 生成粒子のスピンを制御

- P(e[±])<0: L, P(e[±])>0: R
- Solution → Solutio
- ~ スピン偏極度 P=(N↑-N↓)/(N↑+N↓)

P(e⁻)~80%, P(e⁺)~30%

◇ ee>ZHの断面積 P(-0.8,0.3) vs P(0.8,-0.3)

◆ 安定粒子エネルギー分布と平均エネルギー/event

測定器の性能

H/W/Z/? q/g

→ jet

- ~ 終状態の大半はジェット
- $E_{jet} = \sum_{charged} p_i + \sum_{photon} E_i + \sum_{neutral hadron} E_i$ ~ Ejetの測定精度² ~ (w_c荷電粒子)²+(w_p光子)²+ (w_kKoL)²+(confusion)² jet part.shower
- № wc~0.65, wp~0.25, wк~0.1

H/W/Z/? q/g

→ jet

- ~ 終状態の大半はジェット
- $E_{jet} = \sum_{charged} p_i + \sum_{photon} E_i + \sum_{neutral hadron} E_i$ ~ Ejetの測定精度² ~ (wc荷電粒子)²+(wp光子)²+ (wkKoL)²+(confusion)² jet part.shower
- № wc~0.65, wp~0.25, wк~0.1

H/W/Z/? q/g

→ jet

- ~ 終状態の大半はジェット
- $E_{jet} = \sum_{charged} p_i + \sum_{photon} E_i + \sum_{neutral hadron} E_i$ ~ Ejetの測定精度² ~ (wc荷電粒子)²+(wp光子)²+ (wkKoL)²+(confusion)² jet part.shower
- № wc~0.65, wp~0.25, wк~0.1

H/W/Z/? q/g

→ jet

- ~ 終状態の大半はジェット
- $E_{jet} = \sum_{charged} p_i + \sum_{photon} E_i + \sum_{neutral hadron} E_i$ ~ Ejetの測定精度² ~ (wc荷電粒子)²+(wp光子)²+ (wkKoL)²+(confusion)² jet part.shower
- № wc~0.65, wp~0.25, wк~0.1

H/W/Z/? q/g

→ jet

- ~ 終状態の大半はジェット
- $E_{jet} = \sum_{charged} p_i + \sum_{photon} E_i + \sum_{neutral hadron} E_i$ ~ Ejetの測定精度² ~ (wc荷電粒子)²+(wb光子)²+ (wkKoL)²+(confusion)² jet part.shower
- № wc~0.65, wp~0.25, wк~0.1

- \sim 磁場中で円運動 p = eBR
- ~ 半径R(m), B(T), 運動量 p(GeV/c)
- ≫ 測定量:通過位置>R計算 → 測定精度 $\frac{\sigma}{p} \sim \frac{p}{\sqrt{NBL^2}}$

- ◇ 問題点:大きなコイル、物質減らす
 multiple-scattering

>与那嶺TPC T.Takeshita@ILC-SC2013

どうして止まるか? dE/dX

IE/dx (MeV g⁻¹cm²)

物質を通過すると原子 をイオン化し自分はエ ネルギーを失う dE/dX (MeV/gcm²) 密度をかけて dE/dX (MeV/cm)

止まる@X

雷磁シャワーCAL

 $R_{\rm M}^{\rm Fe} \sim 1.26 cm, R_{\rm M}^{\rm W} \sim 0.70 cm$

- → B: constant: もれ, 非一様性 ~1% ^{定数項}

 奥行き~25X₀~

9cmW

ハドロンシャワーCAL

- ~ 90%のハドロンシャワーが入る半径
- ◇ ~7cm 吸収物質Fe ◇ エネルギー分解能: $\frac{\sigma}{E}$ ~ $\frac{A}{\sqrt{E}}$ ⊕ B
- → B: constant: もれ, 非一様性 ~ 4% _{定数項}

 座数項

 ② 奥行き~5λ ~
- Sampling HCAL: 3D再構成

90cmFe

- jet内の粒子を測定
- ~ トラックから運動量ベクトル
- → カロリメータからエネルギー
- → jetの4vectorを計算 荷電粒子

- ~ 残りは光子(のはず)

T.Takeshita@ILC-SC2013

クラスタ

トラック

光子

- jet内の粒子を測定
- ~ トラックから運動量ベクトル
- → カロリメータからエネルギー
- → jetの4vectorを計算 荷電粒子
- → ECALから取り除く
- ~ 残りは光子(のはず)

T.Takeshita@ILC-SC2013

クラスタ

トラック

光子

カロリメ・

HCAL

ECAL

- ~ ECAL (前) +HCAL(後)
- → 光子測定性能:横方向の広がり
- → ECAL:タングステン吸収層+薄い 測定層 横広がり

non-mag ・ HCAL:ステンレス吸収層 縦広がり				
吸収物質	X ₀ (cm)	ρ	λı(cm)	λι/Χο
Fe	1.77	7.87	16.8	9.5
W	0.35	19.3	9.94	28

再構成の問題

- ◆ クラスタリング法:測定器細分化度に依存 ECAL HCAL
- → 運動量とエネルギーがマッチしない場合

- ~ 測定器への要求: クラスター分離
 - ~ 細分化<>コスト

~ 測定されたデータを使い粒子を識別

~ 測定されたデータを使い粒子を識別

~ 測定されたデータを使い粒子を識別

Higgs 解析

◆ event を 4jetsに分ける

=250fb⁻¹ without kinematical constraint fits

◇ 山がHiggs mass にできるか?

T.Takeshita@ILC-SC2013

25

Higgs 解析

- ◆ event を 4jetsに分ける
- ◆ 各ジェットのエネルギーと方向
 $E_{jet} = \sum_{charged} p_i + \sum_{photon} E_i + \sum_{neutral hadron} E_i$

J1 θ12 J2 J3

=250fb⁻¹ without kinematical constraint fits

- → 山がHiggs mass にできるか?

25

Higgs 解析

- ◆ event を 4jetsに分ける
- ◆ 各ジェットのエネルギーと方向
 E jet = $\sum_{charged} p_i + \sum_{photon} E_i + \sum_{neutral hadron} E_i$

J1 θ12 J2 J3

=250fb⁻¹ without kinematical constraint fits

- → 山がHiggs mass にできるか?

T.Takeshita@ILC-SC2013

25

→ Jet エネルギー分解能>測定器を縛る:大きさ

- ~ 崩壊点測定器
- b/c quark tagging
- b/c quarkの寿命は長い~10⁻¹²s CT~300ym 衛突点IPに近づく: ビームパイプ
- ~ ごみ(e/γ)が増える
- ~ 位置測定精度をあげる
- ~ 小さいピクセル

T.Takeshita@ILC-SC2013

崩壞点

e+

b/

ρ-

Luminosity 測定 $\mathcal{L} = \frac{Yield(\theta)}{\sigma(\theta)}$

~ 衝突点でビーム衝突がどのくらい起きているか

☆ 既知のdσ(θ)を使う: e+e->e+e-:Bhabha散乱

≫ 前方超ピーク:測定器は超前方 θ ~0 by FCAL

Luminosity 測定 $\mathcal{L} = \frac{Yield(\theta)}{\sigma(\theta)}$

~ 衝突点でビーム衝突がどのくらい起きているか

☆ 既知のdσ(θ)を使う: e+e->e+e-:Bhabha散乱

ILD

- International Large Detector
- ◆ Large: tracker : large N測定点、 ジェットの中の粒子の分離:TPC _{独+日}
- $\frac{\sigma}{p} \sim \frac{p}{\sqrt{NBL^2}}$

ILD

- International Large Detector
- ◆ Large: tracker : large N測定点、 ジェットの中の粒子の分離:TPC _{独+日}

BigBang

- ~ 高温=高エネルギー
- ◆ 衝突実験は宇宙の初
 まりを人の手で再現

→ 宇宙創生に迫る

T.Takeshita@ILC-SC2013

History of the Universe

- ~ 衝突型加速器の実験
- ~ なぜやるのか?
- ∞ どうやってやるか?
- ~ なにを知ろうとしているか?

∞ これからどうなるか?

~ 皆さんの仕事はどこに位置づけられているか?

☆ なぜやるのか?
 なぜILC

∾ どうやってやるか?

∞ なにを知ろうとしているか?

∞ これからどうなるか?

~ 皆さんの仕事はどこに位置づけられているか?

- ☆ なぜやるのか?
 なぜILC
- ~ どうやってやるか? 衝突実験
- ∞ なにを知ろうとしているか?
- ∞ これからどうなるか?
- ~ 皆さんの仕事はどこに位置づけられているか?

~ どうやってやるか? 衝突実験

∞ なにを知ろうとしているか? どうやって

∞ これからどうなるか?

~ 皆さんの仕事はどこに位置づけられているか?

- ☆ なぜやるのか?
 なぜILC
- ~ どうやってやるか? 衝突実験
- ∞ なにを知ろうとしているか? どうやって
- ~ これからどうなるか?
 今でしょう
- ∞ 皆さんの仕事はどこに位置づけられているか?

AT THE

1

T.Takeshita@ILC-5020 Pakage