ILD のカロリメータ

ILC 夏の学校 @富山 7月 22日 2013年 信州大学 小寺克茂

2012年春 物理学会会場

Jet Energy分解能改善方法3つ

JEResoln. が悪くなる(特にHadronCAL)原因.

- EM interaction と Hadronic interaction では, energy deposition の率が違う(e/h ≠ 1)
- EM interaction と Hadronic interaction の比率(fem) の変動
- JER の劣化

対策法

1.e/h=1のハードウェア-を作る.

2. femをevent 毎に測定(Cerenkov 光を見る)

3. 微細分割カロリメーター Jet 中の粒子毎に解析... Particle Flow Algorithm EM shower(photon) Hadronic Shower を分ける.

Tracker のp分解能高さ

カロリメータ中の粒子を分けてしまおう!

Imaging Calorimeter

カロリメータ中の粒子を分けてしまおう

Imaging Calorimeter

カロリメータ中の粒子を分けてしまおう

カロリメータの細分割度 particle を高くすると, 粒子クラ clusters スターの一つ一つを分離 ◆ トラックとクラスターを 一対一対応できる. ◆ 対応が無かった中性粒子 のエネルギーだけを測定 ECAL HCAL TPC する クラスター粒子を同定し、ハドロンシャワーと電 磁シャワーでの反応の違いも補正⇔e/h≠0 問題, fem 変動問題も解消

Particle Flow Algorithm

calori meter	fraction	σε/√Ē		calori meter	fraction	σε /√E
HCAL	70%	55%		HCAL	10%	55%
ECAL	30%	15%		ECAL	30%	15%
			-	Track	60%	< 1%@30GeV

Using an algorithm: PandoraPFA by Mark Thomson

目標のJER OE/Eく3.5% for W,Z jet を十分に達成!

PFA では E/H-CAL はもはやカロリメトリーの一部

ATLASとの比較 時間があまればCMSも見せます。

ATLAS TOR より, JEResoln.

ILD

I L D-ECAL

ECAL の absorber は tungsten. 厚み2mm~4mm Moliere Radius 小さい, Xo短い, 知長い,..cool!

	LD)-H(CAL	Ana		ghcal	alignment	WLS Mirror Juss Align. SiPM Pins
	Endca	p1		Endcap	2		WLS new Tile	
か	たい,	EM show	wer の様	子も見た	261			
	mate rial	λı(cm)	Xo(cm)	λι/Χο	0 cm			
	Fe	16.8	1.76	9.5	H=11		200	
	Cu	15.1	1.43	10.6			20 /	230 cm
	W	9.6	0.35	27.4				HCAL End detector in modules
	РЬ	17.1	0.56	30.5		B = 82 cm		modules D
•					-	511	\checkmark	12

	LD)-H(CAL	Ana		gHCAL	alignment pins SiPM WLS new Tile	WLS Mirror Juls Align. SiPM Pins
	Endca	p1	IP 2	Endcap	2			
か	たい。	Frame EM show	ver の様	子も見た	261			
	mate rial	λı(cm)	Xo(cm)	λι/Χο	0 cm			
	Fe	16.8	1.76	9.5	H=11		200	
	Cu	15.1	1.43	10.6			201	230 cm
	W	9.6	0.35	27.4			<u> </u>	detector in modules
	РЬ	17.1	0.56	30.5		B = 82 cm		inoddioo D
-							γ \sim	13

Digital HCAL Semi Digital HCAL

割愛.時間が余れば....

E,H-CALの細粒度

Scinti.Strip で 5mm×5mm

Strip Splitting Algorithm 当該 strip と交わる上下層 strip の energy deposit を重み として当該 strip の energy を 仮想 正方セルに割り振るだけ

energy 分解能のstrip 長依存性 は大幅に押さえられる

Jet Energy Resolution の jet energy についての依存性

さらなる改善のために...

コスト面からみたHybrid

前にSi層,後ろにSc層 を置くconfiguration

半分Sc-strip にして もJER は変わらない.

課題(進行中)

読み出し Bias 制御 AMP, ADC, monitoring LED 全てボードに載せ 層間に挟み込む

2013 7月6-14日 DESY TB Technological Prototype

不安定さが残る. まだ厚い 目標0.8 mm.

7 Silayers + 2 Sclayers 2 AHCAL layers + 2 Sclayers

2 種類 layer の同期測定

> Si + Sc Sc + AHcal

まとめ

- ILD calorimetry は Particle Flow Algorithm を採用,
- PFA 無しの場合の2倍以上よいjet energy 分解能,
- PFA のための細分化,
 - Ecal 5x5mm² x 5~7 mm 分割 (30 層),
 - HCAL 30x30 mm² x 23mm 分割(48 層),
- CALICE-ASIA は SiECAL, ScECAL, hybrid-ECAL, さら にSc-strip HCALを開発中,
- 実機制作を考慮した Technological prototype の phase へ,
 - ☆課題:読み出し系のコンパクト化もう一息,

MPPC/Scintillator系デザインの詰...

2012年, 2013年テストビーム

by T.Ogawa

Jet Energy Resolution の jet energy についての依存性

- ・● → : JER は SSA で大幅に改善され ている.特に高エネルギーでの改善が 著しい.
- ● : 面積が同等の15 mm x 15 mm 正方 scinti.の分解能と比べても 45 mm x 5 mm strip + SSA は良い分解能を持つ
- → O:45 mm x 5 mm strip scinti.の 分解能と5 mm x 5 mm 正方 scinti.の分 解能は、SSA でほぼ同等となる. とはいえ、まだ無視できない差が残っ ている.

RPC-DHCAL (for SiD)

PFA にとって,クラスター分離と interaction 弁別が重要 ∴細分割度が重要. Energy は,細分割度をあげれば,hit 数だけでもはかれ るという思想: | x | cm² pad

E/H-CAL 以外のCAL

- LumiCal
 beam ルミノシティー (10⁻³の精度@ 500 GeV √s)
- BeamCal bunch 毎のルミノシティー fast feed back system
- LHCal Low angle HCAL

Muon system = Return yoke (7-10)×(25-30)×(~2700) mm³ plastic scintillator

ILD の E/H-CAL ECAL: 5×5 mm² × 3-6 mm(含W abs)×30層 HCAL: 30×30 mm² × 25 mm(含Iron abs)×40層 よく似たコンセプトの LHC detector CMS の ECAL 21.8 × 21.8 mm² × 230 mm, PbWO₄ r = 1240 mm 単粒子 energy resolutionは非常に良い: 2.7%/√E ILD ECAL は ~15%/ \sqrt{E} CMS の HCAL 200×200 mm² ~ × 50 mm Cu abs + 4mmscinti., -35.9 pb¹ CMS preliminary 2010 $r_{min} = 1.8 m$ jet p_T resolution (Anti-k, R=0.5 ILD calorimetry の Jet energy 分解能 (in 2-jet events) Jet energy (GeV) 0.1 45 180 100 250 J.E.R. 0.035 0.030 0.030 0.033 0

p, [GeV]

Digitallまどの微細分割度で analog HCALが可能か?

Yes, 現在のscintillator AHCAL は 30 mm x 30 mm x 3 mm.

同体積10 mm x 90 mm x 3 mm scintillator にすることには, ハードウェア-開発については何の困難も伴わない.

ECAL について開発した StripSplitting method を使えば, 10 mm x 10 mm 近い細分割度が可能.

10 mm x 180 mm x 2 mm.Sc を使って180 mm x 180 mm 2 層の detector で宇宙ミューオンの 天頂角分布を測った. 原田 信州大学4年(2010年)

Jet energy resoln. Performanceのバロメータとして, W+W-とZ⁰Z⁰ pairの識別 e⁺ Higgs あってしまった みたいだけど.... jet iet Strong EWSB EWSBS Detector performance としては大切。(why?は現地で) 4 jets reconstruction

カロリメータの構造

