Beam Delivery Systems (BDS) and Machine Detector Interface (MDI)

Chapter 8 in Vol.3 of ILC TDR

田内利明, KEK

加速器・物理合同 ILC 夏の合宿、2013年7月20~23日、 呉羽ハイツ、富山県

What is MDI? **MDI** is Machine Detector Interface Machine : Beam Delivery System (BDS) from LINAC-end to beam dump collimation, energy/polarization, final focus, extraction (energy/polarization) and beam dump **Detector : Interaction Region** experiment (physics; Higgs, Top, W/Z, SUSY, extra-D ...) luminosity, background and minimum veto-angle

ILC : International Linear Collider 2005 - 2013 -

MDI

Detector /Physics Research Director Common task groups :MDI

collective view of requirements from detector /physics Machine GDE director Accelerator Systems :BDS (WG4@RDR)

国際リニアコライダー (ILC) 超伝導加速空洞による全長約31kmの線形加速器

2004年8月、COLD選択(ICFA)

2005年3月、ILC GDE (Global Design Effort)結成,

Barry BarishがGDE directorに就任

2006年3月、BCD (Baseline Configuration Document)

2007年8月、RDR(Reference Design Report), コスト評価

TDR作成へのR&Ds, 試験加速器提案など

©Rey.Hori/KEK

2007年10月、山田作衛氏がResearch Director (RD) 就任, call for LOI

2007年12月、Black December

2009年夏、二つのLOI(測定器グループ)承認

2011年6月、ILC TDR-R&Dの中間報告書完成 (GDE Interim report)

2012年12月、TDR(物理・測定器のDBD, Detailed Baseline Design Reportの含む)の最終原稿の完成

2013年2月、新しいLinear Collider Collaboration結成, Lyn Evansが そのdirectorに就任

2013年6月、TDR完成

Crossing angle (headon, V-0.3mrad, 2mrad, 7mrad, 20mrad, >30mrad@ $\gamma \gamma$) 2 IP's for 2 "identical experiments" \rightarrow 14 mrad, single IP Precise energy and polarization measurements push-pull Backgrounds (muons and synchrotron radiations)

IR: Horizostan Grassing Angesue

Crab Crossing by Bob Palmer, 1988

Small angle : $\Phi < 2\sigma / \sigma_z > \Phi$: Large angle ~ 3 mrad timing of two crab cavities easy extraction line 16(50) fsec at $\Phi = 20(7)$ mrad smaller dead cone (θ) smaller back scattering? multi-bunch instability radiation/bend in solenoid irrelevant in "cold" $\Delta \sigma_v^2 \propto (B\Phi L^*)^5, \Delta y' = B\Phi/(2B\rho)$ Δ (spin)=3.25°/100 μ rad (E/250GeV)

IR: Horizostan Grassing Angesue

Crab Crossing by Bob Palmer, 1988

Small angle : $\Phi < 2\sigma / \sigma_z > \Phi$: Large angle ~ 3 mrad timing of two crab cavities easy extraction line 16(50) fsec at $\Phi = 20(7)$ mrad smaller dead cone (θ) smaller back scattering? multi-bunch instability radiation/bend in solenoid irrelevant in "cold" $\Delta \sigma_v^2 \propto (B\Phi L^*)^5, \Delta y' = B\Phi/(2B\rho)$ Δ (spin)=3.25°/100 μ rad (E/250GeV)

IR: Horizostan Grassing Angesue

Crab Crossing by Bob Palmer, 1988

Small angle : $\Phi < 2\sigma / \sigma_z > \Phi$: Large angle ~ 3 mrad timing of two crab cavities easy extraction line 16(50) fsec at $\Phi = 20(7)$ mrad smaller dead cone (θ) smaller back scattering? multi-bunch instability radiation/bend in solenoid irrelevant in "cold" $\Delta \sigma_v^2 \propto (B\Phi L^*)^5, \Delta y' = B\Phi/(2B\rho)$ Δ (spin)=3.25°/100 μ rad (E/250GeV)

Crab Cavities

Figure 10.18. Field distribution for the operating mode of the $3.9\,\mathrm{GHz}$ crab cavity

CLIC : ~3m long, the phase jitter < 0.02°(4.6fsec) and amplitude<2% at 12GHz 2% luminosity loss

Interaction Region (IR)

L* : Distance of QD0(QC1) from IP
Vertex R (the innermost radius)
Minimum veto-angle (very forward calorimeter)
Backgrounds (pairs, mini-jets, backscattered γ and n)
Instrumentations (pair monitor, feedback, Shintake monitor ...)

Choice of L*

LC Parameters

parameter	symbol	unit	ILC (TDR)	"ILC-γγ" V.Telnov's idea	CLIC (CDR)	
energy	E	GeV	250	250	1,500(250)	
emittance	γε _× /γε _y	μm	10/0.035	<mark>2.5</mark> /0.03	0.66/0.02	
IP beta function	<i>β[*]_×/β[*]y</i>	mm	11/0.48	1.5/0.3	6.9/0.068 (8/0.1)	
IP beam size	σ*x/σ*y	nm	474/5.9	<mark>88</mark> /4.3	45/0.9 (202/2.3)	
<upsilon> $\gamma B_{beam}/B_{critical}$</upsilon>	$oldsymbol{\gamma}_{ave}$		0.063	0.33	5 (0.2)	
max. deflection angle	θd (θo, θo/x)	mrad	0.5	10 (e ⁻)	10 (coh.pair) $E_{coh.pair}/E > 0.05/\Upsilon$	
crossing angle FD distance, aperture	Φ >θd+Rq/L* L*, Rq	mrad m, cm	14 L*=3.5- 4.5 Rq=2.8	25 L*=4, Rq=6	20 (18.6) L*=3.5-4.3, Rq=3.7	
other				γ dump		

CLIC QD0 : Hybrid magnet

Table 4: Specifications of the FD QD0 quadrupole for the different L^* cases.

L*	m	3.5	4.3	6.0	8.0
Gradient	T/m	575	382	200	211
Length	m	2.7	3.3	4.7	4.2
Beam aperture	mm	3.8	6.7	8	8.5
Jitter tolerance	nm	0.15	0.15	0.2	0.18
Gradient tol	10^{-6}	5	5	-	3
Octupolar error	$10^{-4}@1$ mm	7	7	-	3
Prealignment	μ m	10	10	8	2

Fig. 5.289: Hybrid QD0 short prototype

with the same cross section but shorter length, which performs close to the specifications

Figure 14: Dipolar field $B_x = f(z)$ generated by the anti-DID (version 1). (Numbers on the vertical axis for B_x given are in T, labels on the horizontal axis for z are in mm).

International Large Detector (ILD)

Detector solenoid : 3.5T

ILD is on purpose a large detector. At large radii particles within a jet are more separated, thus making it easier to measure them precisely. Having a large inner radius of the calorimeter does open the possibility to use a technology like the TPC as a central tracker. Last but not the least a large detector adapts more easily to higher energies of the collider than originally designed for.

Forward Calorimeter System for MDI

Ρ

Silicon Detector (SID)

Detector solenoid : 5T

a powerful silicon pixel vertex detector, silicon tracking, silicon-tungsten electromagnetic calorimetry and highly segmented hadronic calorimetry.

ILD and SID moving on platforms Agreed at ALCPG11, March 19-23,2011, Eugene, OR, USA,

ILC BDS, Ecm = 500GeV

to accommodate the upgrade to 1TeV center-of-mass energy

side walls with pumping slots (1:1 aspect ratio, about 40% transparency)

21mm long Ti spoiler block with Be tapers up- and downstream

passive survival of spoilers up to two full charge bunch impacts at 250 GeV beam energy

Figure 2.4.3: Schematic of the upstream polarimeter chicane.

Upstream Energy Spectrometer E = 45.6GeV to 500GeV

700m upstream from IP

Figure 2.4.1: Schematic for the upstream energy spectrometer using BPMs.

Polarimeter principle

The opposite sign helicity configuration ($P\lambda = -1$), which has parallel spins ($m_j=3/2$), dominates at the Compton edge over the other helicity and spin orientation ($P\lambda = +1$ and $m_j = 1/2$).

 E_0

(GeV

45.6

250

λ

(nm)

1064

532

266

1064

 ω_0

(eV)

1.165

2.33

4.66

1.165

2.33

x

0.813

1.63

3.25

4.46

8.92

Figure 4. Energy spectra (top), spin asymmetry (middle) and scattering angles (bottom) of Compton scattered electrons and photons, for a beam energy of 250 GeV and a green laser.

Figure 6. Energy spectra (top), spin asymmetry (middle) and scattering angles (bottom) of Compton scattered electrons and photons, for a beam energy of 45.6 GeV and an ultraviolet laser.

 E_{min}

(GeV)

25.2

17.3

10.7

46

25

 ω_{max}

(GeV)

20.4

28.3

34.9

204

V. Gharibyan, N. Meyners and P. Schuler, "The TESLA Compton polarimeter," LC-DET-2001-047

Downstream Polarimeter and Energy Spectrometer

Figure 2.4.2: Schematic of the ILC extraction line diagnostics for the energy spectrometer and the Compton polarimeter.

WISRD: Wire Imaging Synchrotron Radiation Detector consisting of radiation-hard 100um quartz fibers

Test Facility : ATF and ATF2

Chromaticity at quadrupole and sextuple magnets

Learns from SLC experiences

SLC has never achieved the design luminosity, e.g. finally half of design luminosity after 10 years operations

with smaller beam sizes,

i.e. 1.5(x), 0.65(y) μ m v.s. 1.65(x), 1.65(y) μ m of the design

by careful emittance preservation and improvements in the final focus optics with less beam intensities,

i.e. 4 - 4.5 $\times 10^{10}$ /bunch v.s. 7.2 $\times 10^{10}$ /bunch of the design and the repetition rate of 120Hz instead of 180Hz.

ILC and CLIC have been designed with these SLC experiences.

- 1. Less beam intensity and smaller beam sizes, control of emittance growth
- 2. Final focus systems are based on the local chromaticity correction scheme which has better performance than the separated function chromaticity correction scheme at SLC.
- 3. ATF2 is very important to verify the expected performances as a ILC/CLIC FF test facility
- 4. Additional skew sextupoles, octupoles and decapoles should be included in the baseline designs to minimize the residual higher-order aberrations.

IR arrangements

Figure 2.7-11 in RDR

IP beam feedback concept

- Last line of defence against relative beam misalignment Measure vertical position of outgoing beam and hence beam-beam kick angle Use fast amplifier and kicker to correct
 - vertical position of beam incoming to IR

FONT – Feedback On Nanosecond Timescales

ILC IR: SiD for illustration

P. Burrows, ATF2 Technical Review, 3-4 April, 2013, KEK

Final Doublet Region (SiD)

Figure 8.5. Power loss density in the magnet region for disrupted beam at $250 \,\text{GeV}$, for high-luminosity operation.

- Normal operation
 - 0.2 μ Sv/h for Non-designated area (K1)
 - 1.5 μSv/h for Supervised area (K2) experimental hall
 - 20 μ Sv/h for Simple controlled area (K3)
 - 100mSv/h for access restricted
- Shielding 100 µSv/event(K2) 1mSv/event (K3)
- Mis-steering beam loss

In the KEK regulation, there is no explicit description of ambient dose limit for beam operation conditions and beam loss classification such as SLAC-RSS

-1 hour integration of dose rate should not exceed 1.5 μ Sv/h using radiation monitor.

(Terminate injection and wait 1 hour)

SiD and ILD : Shielding capability of 250 mSv/h / 18 MW = 0.014 mSv/h/kW is required everywhere to meet SLAC requirement

T.Sanami, IRENG 09/14/2007

- Normal operation (S1) including screen, wire-scanners
 - $-0.5 \ \mu Sv/h$ for GERT (General Employ Radiation Training)
 - -5 μSv/h for Radiation Worker (RW)
- Mis-steering (S2) hardware failures, operator errors,..
 -4 mSv/h
- Annual dose should be less than 10mSv/year (S1,S2).
- System failure (S3) beam stopper failure and/or electric power failure of important bending magnet
 - -250 mSv/h and 30 mSv/event

(from SLAC-I-720-0A05Z-002-R001 Radiation Safety Systems (Technical Basis Document, April 2006))

T.Sanami, IRENG 09/14/2007

- Normal operation
 - –0.1 μ Sv/h for Non-designated area
 - $-1~\mu Sv/h$ for Supervised area
 - $-3~\mu Sv/h$ for Simple controlled area
- Total beam loss
 - -0.3 mSv/h for Non-designated area
 - -2.5 mSv/h for Supervised area
 - -50 mSv/h for Simple controlled area

(from http://indico.cern.ch/conferenceDisplay.py?confld=1561 talk of D. Forkel-Wirth)

T.Sanami, IRENG 09/14/2007

Self-shielding of the detector (ILDO) at IR

Beam dump

1.8 m-diameter cylindrical stainless-steel high-pressure (10 bar) water vessels with a 30 cm diameter, $11m(30X_0)$ length, 1 mm-thick Ti window.

18MW/500GeV per beam z=2.8m (8.1X₀) Maximum temperature = 155°C with the beam train passage and beam sweep radius 6cm

The pressurisation raises the boiling temperature of the dump water; in the event of a failure of the sweeper, the dump can absorb up to 250 bunches without boiling the dump water

Shielding and protection of site ground water

Fig. 29. Power depositions in the entire dump region (average of y=-342.5 cm and +342.5 cm).

LCC : Common paths for ILC and CLIC BDS

towards the same design lattice designs of some sub-system Possible issues :

- 1. Lattice repository
- 2. Parameters; staging energies at 250GeV@ILC, 350GeV@CLIC,

crossing angles of 14mrad@ILC and 20mrad@CLIC

- 3. Crab cavity tolerances; 61fs@ILC and 4.6fs@CLIC
- 4. Lattice design options; changes with accommodation of octupoles (tail folding) alternative lattices
- 5. QD0 technology; superconducting and hybrid
- 6. Polarimetry; post-IP polarimetry is needed ?
- 7. Collimation ; active protection@ILC and passive@CLIC
- 8. Final Focus System (FFS) tuning; lessons from ATF2
- 9. Beam dumps
- 10. Energy spectrometry
- 11. Instrumentation (LW, OTR, BPM) and feedback
- 12. MDI issues; push-pull, QD0/QF1 alignment ...
- 13. Commissioning strategy

to be discussed at LCWS 2013, Tokyo