ニュートリノ質量とLLC

進藤哲央 (工学院大学)

international linear collider Tokyo Urban Tech

ILC夏の合宿2013@富山 20/07/2013

ニュートリノ質量

- ニュートリノ質量は非常に小さい
 - トリチウムのβ崩壊による制限: m<2eV</p>
 - 2重β崩壊や宇宙論等からの制限も0(0.1eV)以下を示唆
 - 電子質量に比べてもかなり小さい
 - 近似的にはmassless?
- 「標準模型」はニュートリノ質量が0になるように作られている

ニュートリノ振動 $\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} / \mathcal{P}$ 質量固有状態で伝播 フレイバー固有状態 $i\frac{d}{dt}\nu_i(t) = E_i\nu_i \simeq \left(p + \frac{m_i^2}{2p}\right)\nu_i(t)$ として生成・観測 $\nu_e(t) = \left(\cos^2 \theta e^{-iE_1 t} + \sin^2 \theta e^{-iE_2 t}\right) \nu_e + \sin \theta \cos \theta \left(e^{-iE_1 t} - e^{-iE_2 t}\right) \nu_\mu$ よって $P(\nu_e \rightarrow \nu_e) = 1 - \sin^2 2\theta \sin^2 \frac{1.27 \Delta m_{12}^2 [\text{eV}^2]}{E_\nu [\text{MeV}]} L[\text{m}]$ $\begin{array}{l} \Delta m^2_{atm} \sim 2.5 \times 10^{-3} \, eV^2 \\ \Delta m^2_\odot \sim 8.5 \times 10^{-5} \, eV^2 \end{array}$ $\sin^2 2\theta_{\rm atm} \simeq 1$ $\tan^2 \theta_{\odot} \simeq 0.4$ $\sin\theta_{13} \sim 0.1$ SK, KamLAND, SNO, K2K, Daya Bay, T2K etc

ve Appearance Results EPS COT 2KON-2

- **Observed 28 events** (expected 20.44 ± 1.8 for $\sin^2 2\theta_{13} = 0.1$)
- Comparing the best p- θ fit likelihood to null hypothesis gives a 7.5 σ significance for non-zero θ_{13}

(For $\sin^2 2\theta_{23}=1$, $\delta_{CP}=0$, and normal mass hierarchy)

First ever observation (>5 σ) of an explicit v appearance channel

Summary

EPSでのT2Kのトーク

- T2K has made an observation of v_e appearance from a v_{μ} beam
 - $\theta_{13}=0$ is excluded with a significance of 7.5 σ ($\delta_{CP}=0$, sin²2 $\theta_{23}=1$)
- J-PARC achieved steady operation at 220 kW for much of Run 4
- We have now analyzed 6.39 * 10²⁰ POT accumulated by April 12th, 2013
 - This is 2.1 times the Run 1-3 data used for the 2012 analysis
- Analysis improvements have significantly enhanced the sensitivity to v_e appearance (from below 5σ to 5.5σ)
 - Near detector event selection now contains a $CC1\pi^+$ sample
 - The new fiTQun reconstruction algorithm removes 70% of the π^0 background relative to the previous analysis
 - More improvement is expected as fiTQun becomes more fully integrated into T2K analyses
- The v_{μ} disappearance contours are sensitive to the octant chosen
 - Both contours are now provided

シーソー機構:非常に大きなmassで抑制

- type I
- type II

. . .

0

. . .

輻射シーソー: ループファクターで抑制

余剰次元模型: 波動関数の重なりで抑制

例1:typelシーソー模型 非常に重い右巻きニュートリノを導入 同時に説明 ニュートリノ質量の起源 ϕ_2 ϕ_2 バリオジェネシス $\qquad \qquad N = Y_N^{\dagger} \qquad N + Y_N^{\dagger} \qquad Y_N \qquad \qquad$ $m_{\nu} = \frac{v^2}{2} y_N^T M_N^{-1} y_N$ 右巻きニュートリノのCPを破る ただし、この模型は一般に非 崩壊によって#(B-L)が生成 常に高いmass scaleでの拡 張模型になっている スファレロンによって#Bに変換 さらに M_Nが軽い→結合が弱い 直接測定はほぼ不可能! (Left-Right模型でRHNが軽ければ検証できるかも)

例2:type II シーソー模型 トリプレットヒッグス(Y=1)を導入 $\mathcal{L} = rac{Y_\Delta}{2} ar{\ell}^c \Delta \ell$ △の中性成分が非常に小さなvev(~0.1eV)を持つ 小さなニュートリノ質量 この模型のヒッグスポテンシャル: $V = \mu^2 H^{\dagger} H + \frac{\lambda}{2} (H^{\dagger} H)^2 + m_{\Delta}^2 \operatorname{tr}(\Delta^{\dagger} \Delta) + \frac{\lambda_T^1}{2} [\operatorname{tr}(\Delta^{\dagger} \Delta)]^2 + \lambda_T^2 \operatorname{det}(\Delta^{\dagger} \Delta)$ $+\lambda_T^3(H^{\dagger}H)\operatorname{tr}(\Delta^{\dagger}\Delta) + \lambda_T^4H^{\dagger} \cdot H\operatorname{tr}(\Delta^{\dagger}\cdot\Delta) + \left(\frac{\mu_T}{\sqrt{2}}H \cdot \Delta^{\dagger}H + \mathrm{h.c.}\right)$ $v_{\Delta} \sim \frac{\mu_T v^2}{2m_{\star}^2}$ μ_T が小さければ,軽いトリプレットヒッグスも可能!

SM-like Higgs結合の精密測定にも足跡がある!(菊池さんのトーク) また,複荷電ボゾンが登場

複荷電ボゾンの現象論 LHCでの例: $q\bar{q} \rightarrow \gamma^*, Z^* \rightarrow H^{++}H^{--} \rightarrow \ell^+ \ell^+ \ell^- \ell^-$

例3:輻射シーソー模型

輻射補正によってニュートリノ質量を生成

輻射シーソー模型@ILC

 $m_{\xi_r} = 50 \text{ GeV}, \ m_{\xi_i} = 60 \text{ GeV}, \ m_{\xi^{\pm}} \sim 100 \text{ GeV}, \ m_{N_R^1} = m_{N_R^2} = 3 \text{ TeV},$ $\lambda_5 = -1.8 \times 10^{-2}, \ \hat{h}_e^{\alpha}, \hat{h}_{\mu}^{\alpha}, \hat{h}_{\tau}^{\alpha} \sim 10^{-5},$

輻射シーソー模型@ILC

U U M. Aoki and S. Kanemura, PLB689,28 Ķ H \mathbf{v}_L^i - $\mathbf{v}_{\mathrm{L}}^{j}$ $\bar{\mathbf{e}_{R}}$ $e^+e^- \to S^+S^- \to \tau^+\tau^-$ (+ missing energy). h_{i}^{α} 1000 **AKS model AKS model** $\sqrt{s} = 1 \text{ TeV}$ $\tau^+ \tau^- + missing energy$ $|\tau^+ \tau^- + missing \ energy|$ ττ Diff. cross section [fb] Cross section [fb] $WWv_{\tau}v_{\tau}$ Signal 100 $\tau \tau$ Signal $S^{+}S^{-}$ $S^{\dagger}S^{\dagger}$ 100 $WWv_ev_{\underline{e}}$ $H^{\dagger}H^{\dagger}$ $\tau \tau v_e v_e$ $H^{\dagger}H$ 10 $\tau \tau v_{\tau} v_{\tau}$ 10 200 1000 1200 400 600 800 -0.5 0 0.5 -1 $\cos\theta_{\tau}$ \sqrt{s} [GeV]

 $m_{\eta} = 50 \text{ GeV}, \ m_{H^{\pm}} = 100 \text{ GeV}, \ m_{S^{\pm}} = 400 \text{ GeV}, \ m_{N_{R}^{1}} = m_{N_{R}^{2}} = 3 \text{ TeV},$ $h_{e}^{1} = h_{e}^{2} = 2 \gg h_{\mu}^{1}, h_{\mu}^{2} \gg h_{\tau}^{1}, h_{\tau}^{2}, \ \kappa \sim \mathcal{O}(1), \ \sin(\beta - \alpha) = 1, \ \tan\beta = 10.$

輻射シ ·模型@ILC

M. Aoki and S. Kanemura, PLB689,28

υ

U

e⁻e⁻オプションだとMajorana性が見えてくる

高いスケールを目指して

- 輻射シーソー模型の場合の基本理論はどうなっているのか?
- 単純なGUT(特にSUSY GUT)にうまく埋めこめるか?
 - 大きな結合定数が要求される場合がある→ランダウポール
 - 新たなnon-singlet場→ゲージカップリングのrunを変更
 - Grand desertの果ての統一とは異なる可能性を考えたい

SUSY SU(2)_H模型

あるスケールで強結合理論になる S. Kanemura, T.S, T. Yamada, PRD86,055023

SUSY SU(2)_H×SU(2)_L×U(1)_Y×Z₂

SU(2) _H doublets						GTT(a)	TT (4)	
Fielda	SII(2)	TT(1)	7.	1	Field	$SU(2)_L$	$U(1)_Y$	Z_2
T_1	$\frac{30(2)_L}{2}$	$0(1)_Y$	\perp_2		$H_u = \begin{pmatrix} M_{13} \\ M_{23} \end{pmatrix}$	2	+1/2	+
$\begin{array}{c} \langle T_2 \rangle \\ T_3 \end{array}$	1	+1/2		-	$H_d = \begin{pmatrix} M_{14} \\ M_{24} \end{pmatrix}$	2	-1/2	+
T_4	1	-1/2	+		$N = M_{56}, N_{\Phi} = M_{34}, N_{\Omega} = M_{12}$	1	0	+
T_5	1	+1/2			$\Phi_u = \begin{pmatrix} M_{15} \\ M_{25} \end{pmatrix}$	2	+1/2	
T_6 1 $-1/2$ -				J	$\Phi_d = \begin{pmatrix} M_{16} \\ M_{26} \end{pmatrix}$	2	-1/2	
					$\Omega_+ = M_{35}$	1	+1	_
					$\Omega_{-} = M_{46}$	1	-1	_
confinement					$\zeta = M_{36}, \xi = M_{45}$	1	0	
これが機能する ス				ス	ケールA _H 以下ではT _i の>	メソンM	ij∼TiT	jで
最も単純な場合				理	論が記述される ヒッ	ッグス場	ると同じ	定

SU(2)_H模型の有効理論

新しいスカラー場がわらわら登場→ 輻射シーソーに使える?!

Low energy effective S. Kanemura, E. Senaha, T.S, T. Yamada, JHEP1305,066 theory: $W = - \mu H_u H_d' - \mu_{\Phi} \Phi_u \Phi_d - \mu_{\Omega} (\Omega_+ \Omega_- - \zeta \eta)$

 $+ \hat{\lambda} \{ H_d \Phi_u \zeta + H_u \Phi_d \eta - H_u \Phi_u \Omega_- - H_d \Phi_d \Omega_+ \}$

 $-\hat{\lambda}(\Lambda_H) \simeq 4\pi$ (Naive dimensional analysis)

ついでに電弱バリオジェネシス

Benchmark:

m_h=126GeV

v_c/T_c>1の領域で標準模型の予言値から20%近くずれる

hhh結合

v_c/T_c>1の領域で標準模型の予言値から~+20%以上のずれ

SU(2)」模型と輻射シーソー

S. Kanemura, N. Machida, T.S. and T. Yamada, in preparation

- SUSY Ma模型に必要なextra scalar: Z₂-odd doublet & Z₂-odd neutral singlet
- SUSY AKS模型に必要なextra scalar: Z₂-odd charged singlet & Z₂-odd neutral singlet & Z₂-odd doublet 全て図らずしてSU(2)_H模型に含まれている!!
 Z₂-odd <u>RHN</u>さえ加えれば材料は揃う

∧_Hより上のスケールでも基本場(複合場ではない)

ソフトに破れる(右巻きの質量だけが破る)B-L対称性を仮定

1-loop model S. Kanemura, N. Machida, T.S. and T. Yamada $L(N^c) = -1$ (RHN is lepton) AH以下では: $\mathcal{L} = (y_N)_{ij}N_i^cL_j \cdot \Phi_u + \frac{M_i}{2}N_i^cN_i^c$

- 1-loopの寄与が支配的
- $B_{\eta}\eta^{2}, B_{\eta}\zeta^{2}, m_{\zeta\eta}\zeta^{\dagger}\eta$ のような soft-SUSY-breakingが必要
- SUSY version of the Ma-model

3-loop modelS. Kanemura, N. Machida, T.S. and T. Yamada L(N^c) =1(RHN is anti-lepton) AH以下では: $\mathcal{L} = (h_N)_{ij}N_i^cL_j\Omega^- + \frac{M_i}{2}N_i^cN_i^c$

- 1-loop,2-loopが描けないので,
 3-loopが支配的な寄与
- SUSY version of the AKSmodel

 $y_N N^c L \cdot \Phi_u$ is forbidden by Lepton number

まとめ

- ニュートリノ質量の生成機構を検証したい
 - type シーソーだと直接検証はやや難しい
 - type IIだと複荷電ボゾン探し
 - 輻射シーソー模型はILCでの検証にうってつけ
- 輻射シーソー模型の統一理論的描像
 - 砂漠+GUTではなく,すぐ上のスケールに沃野が広がる可 能性
 - SUSY SU(2)_H模型には材料が綺麗に埋めこまれている
 →より基本的な理論の候補