Toward discovery of lepton number violation at collider experiments

Hiroaki SUGIYAMA (Maskawa Inst., Kyoto Sangyo Univ.)

based on 'M. Kohda, HS, K. Tsumura, PLB718, 1436 (2013)'

Majorana mass & L#V processes

Majorana neutrino \Rightarrow L#V process (tiny mass) (tiny rate)

e.g., Neutrinoless double beta decay

Motivation

Two-Loop Neutrino Mass

A. Zee, NPB**264**, 99 (1986) K.S. Babu, PLB**203**, 132 (1988)

Zee-Babu Model

The Model - COOred Zee-Babu Model -

Briefly mentioned in 'K.S. Babu and C.N. Leung, NPB619, 667 (2001)'

L#V Process at the LHC

 \Rightarrow Definite total L# of final states

Evidence for L#V

 $L\#V \implies No SM \text{ process in principle}$ Hard $\ell_L^- (\sim \text{TeV}) \implies No \text{ mimic event in SM}$ \bigcup Clear evidence for L#V

ee -> 4j @ ILC ?

Example 1 (LQ + DQ)

Problems: Light DQ and LQ ?

Couples dominantly with 3rd generation quarks? Too small neutrino mass? (subleading contribution?)

ee -> 4j @ ILC ?

11/12

Example 2 (SU(2) triplet)

Problems: vs LHC ?

L#V process at the LHC

L#V process at the ILC

