

The Performance of the Physics Prototype of the CALICE ScWECAL for ILD

2013年7月23日 ILC夏の合宿@富山 須藤裕司(九州大学)

ScWECAL for ILD

- Pixelated Photon Counter (PPD)の発達により大きな デッドスペースをなくしつつ、細かく分割したシンチ レータを敷き詰めることが可能となった。
- ScWECALはシンチレータタングステン電磁カロリメー タで30層の吸収層と検出層で構成される。
- ScWECALはILD検出器のコスト削減につながる

ScWECAL Physics Prototype

- 吸収層: 3.5mm タングステン
- 検出層: 10x45x3mm³ scintillator + WLSF + MPPC
- 面積:18x18 cm²
- 奥行き: 30 layers (~21X₀)
- 2160 channel
- シンチレータストリップの検出層を直交するように積層することで 10x10 mm²の実質的な 分割を可能にする。

MIPによる 応答 較 正

32 GeV muonを使って応答を較正

MPPC Gain Monitoring and Saturation Correction

- LED + fiberを用いてgainのモニタ リングを行った。
- MPPC saturation correction

Temperature Correction

- MPPC gain is sensitive for temperature.
- We monitored temperature on the surface of the prototype.
- We fitted MIP response with linear function to estimate gain-temperature dependence.

Temp. dependence of all channel.

6

ScWECAL の性能

- 2-32 GeV e⁻ beam
 電子の事象選別後
- 線形フィットからのズレは<2%.
- エネルギー分解能は
- σ stoc. = 13.13 ± 0.03(stat.) %
- $\sigma const. = 2.41 \pm 0.01$ (stat) %

7

Mokkaを使ったシミュレーション

- ビームテストの結果をMokkaを使って評価した。
 Mokka : mokka-07-06-p02
 Geant4 : geant4-09-04-pathc-01
- 使ったilcsoftとMarlin. Ilcsoft : v01-11 Marlin : v01-00
- 大きなサイズのScWECALを設定
- 90 layers, 54x54cm²
- シンチレータのサイズ10x45x3 mm³
- prototype volumeは中央の2160ch
- 全体では58320 ch
- 吸収層: W+C+Co+Cr 3.49mm, 14.25 g/cm³

ScWECAL Response

- エネルギーの漏れにより~3%傾きが減少
- 線形性からのズレはどちらも1%以内

11

エネルギー分解能

~ 3%の漏れにより0.66%の定数項が生じた。 統計項は~ 0.2%増加した 漏れの中央値から±1sigmaの値から系統誤差を評価 + 1σ : const. = 0.676, -1 σ = 0.657 Δconst±0.02% Const = 0.66±0.08±0.02% (Δσ_{const} フィットの不確定性が支配的)

電子ビームの運動量のふらつき

FNAL MT6 でのふらつきは

- 2.7 ± 0.3 % 1-4 GeV
- 2.3 ± 0.3 % > 8 GeV

 $\sqrt{(幅)^2 - (ふらつき)^2}$ をすると

13.20 \pm 0.08 (stat.) \pm 0.45 (syst.) 0.49 \pm 0.1(stat.) $^{+0.80}_{-0.49}$ (syst.)%

誤差の範囲であっている。

Saturation Effect

CALICE-Note16b 実効ピクセル数 Npix = 2428 ± 29 pixel, ばらつき 245 pixel

- Gaussian をつかって各チャンネルのNpixを決めた (mean 2424, sigma 2424*0.1)
- 1000 pseud-ex.
- Saturationの効果は 定数項 0.62 ± 0.15 %

統計項 1.49 ± 0.43 %

まとめ

- ScWECAL試作機は2-32GeVの電子に対して線形な応答を示し、エ ネルギー分解能も良い
- ・シミュレーションとデータのエネルギー分解能はよく一致している
 →試作機を良く理解できている
- ScWECALの実現可能性が示された。

Backup

ILC experiment and ILD detector

- ILC : e-e+ linear collider \sqrt{s} = 250 GeV ~ 1 TeV - Higgs factory
 - W and top mass precise measurement
 - new physics search
- ILD : one of the multi purpose detector for ILC
- Excellent jet energy measurement using Particle Flow Algorithm
- Calorimeter is required fine granularity to identify each particle in a jet
 - \rightarrow number of readout channel ~ 10 M

ILD

Systematic Uncertainties

These systematic uncertainties are estimated with measured data

Source	$\Delta \sigma_{\rm stochastic}$	$\Delta \sigma_{\rm constant}$
	(%)	(%)
Beam momentum fluctuation	± 0.41	$+0.43 \\ -1.18$
Event selection	$< \pm 0.01$	$< \pm 0.01$
ADC-MIP conversion	± 0.08	± 0.07
(stat. uncertainty of conversion factor)		
ADC-MIP conversion	± 0.01	± 0.01
(uncertainty of temp. correction)		
ADC-photon conversion factor	$< \pm 0.01$	$< \pm 0.01$
Inter calibration constant	$< \pm 0.01$	$< \pm 0.01$
Number of effective pixels of the PPD	± 0.07	± 0.06

Materials in the Simulation

- 4 trigger and 1 veto scintillators
- 4 drift chambers
- ScWECAL (54x54cm²x90layers)
 - Absorber : W+C+Co+Cr 3.49mm , 14.25 g/cm³
 - Active layer : scintillator 10x45x3 mm³
- No HCAL

Saturation Effect

- Npix for each strip is defined by Gaussian (mean 2424, sigma 2424*0.012)
- 348 pseud-ex.
- Saturation effect on constant term 0.63 \pm 0.21 %

can16b $\Delta \sigma_{const.} \pm 0.06$

MC study (998 pseudo-experiment) Constant term 0.16 +0.04 -0.06 %

In this case, saturation effect is very small. But it is underestimate saturation effect. 22