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Precision Measurements

Testing Nature at ILC.
Can measure mW, mt, mH, ALR. mZ? with unprecedented

precision.

Experimental reach
RRRLE LR, oo s 16 depends on ability to

w/o M,, and m, measurements

mionemon | control systematics such

w/o M,,, m and M, measurements

. as those associated with
T the beam energy

measurement and

detector energy scales.

¢ Koserrions 2013 See eg.arXiv:1307.3962

To get the most out of ILC in terms of precision, need to push on higher statistics
+ higher resolution (statistical errors) but also controlling systematics.

What use is precision, if we don’t understand measurement errors, and our
detector is not accurate!



Accelerator Requirements

« Much of the EWPO physics scope is predicated on understanding the
absolute collision energy, luminosity spectrum, etc.
— In practice at ILC these need to be determined by the detector.

 Physics running with high luminosity near 91 GeV is needed for
Improving on LEP1/SLC observables.

— ALR only makes sense with polarized electrons and
POSITRON:S.

— High statistics will need excellent control of beam systematics

 Physics running with high luminosity near WW threshold (161 GeV)
with polarized beams is best for mW.

— Higher energies may also play a role.
— Likely need lots of Z’s (almost certainly GigaZ) to take full
advantage.



ILC will produce 10-100M W’s
Polarization very helpful.

For statistical errors, W width
leads to following error per million

reconstructed W decays

Can envisage mass resolution in
the 1-2 GeV range.

Statistics for below 1 MeV error.

Statistics
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W Mass Statistical Errors per Million W Decays
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Can one dream of measuring m,,, to 1 MeV ?

(and not get locked up ;-) )
W—aqq

(jets are not
SO energetic)

Single W study at Vs = 1TeV (e+e-)

W mass fit from hadronic system
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_ Potentially very useful! (Especially, if the
=> Further E;, resolution really challenging requirements on jet
improvement very desirable energy scale and calibration can be met!)



uu, dd, ss at 91 GeV fpc

Event-Specific Resolution

uu, dd, ss at 91 GeV
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P10 Fitting

4 GeV g GWW and Brian van Doren
u " — 7P (98.8%)

7

m-=2E1E>(1 —cosyq2)

We know m=134.9766 + 0.0006 MeV

22(x) = f(x) = (x —xp)" Vs~

We can fit,
minimizing the y?
between the
measurement
vector (X,,) and
the fit vector (x)
subject to the mass
constraint. Can greatly improve E measurement error



Applying to Physics ( H —» hadrons)

e Measured Higgs Mass
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ILC W Mass Measurement Strategies

« W"W-
= 1. Threshold Scan (o ~ 3/s)
= Can use all WW decay modes
= 2. Kinematic Reconstruction (qq e nu

and gg mu nu)
= Apply kinematic constraints

We v (+ WW) -same issues as vvH

discussed above

= 3. Directly measure the hadronic mass i g
InW — q q° decays.

= Can use WW -> @ g tau nu too

Methods 1 and 2 were used at LEP2. Both require good
knowledge of the absolute beam energy.

1000 1500
Vs [GeV]

Method 3 is novel (and challenging), very complementary
systematics to 1 and 2 if the experimental challenges can be met.



Polarized Threshold Scan (GWW)
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Use (-+) helicity 3
combination of e- and e+ Wlth |P| 90% fOf e-
to enhance WW. and |P| 60% for e+

Use (+-) helicity to ) ésets qf Curvps.
suppress WW and ‘ ' ' '
measure background.

Use (--) and (++) to
control polarization (also = —

S 52.5 55 57.5 160 162.5 165 167.5 170
use 150 pb qq events) Center-of-mass Energy (GeV)

Experimentally very robust. Fit for eff, pol, bkg, lumi
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“New” In-Situ Beam Energy Method

s = 161 GeV, Luminosity = 8.2 fb' GWW with J.

mean = 0.999766 + 0.000013

-+ KK MC, e’e* (LR)
— Binned LH fit functio B

ILC detector momentum resolution

Use muon momenta. (0.15%), gives beam energy to better than
5 ppm statistical. Momentum scale to 10

Measqre E, +E, + |p12| as ppm => 0.8 MeV beam energy error
an estimator of Vs orojected on mW. (J/psi)

Beam Energy Uncertainty should be controlled for Vs <= 500 GeV



Can control momentum scale
using measured di-lepton mass

100k events

350 GeV

mean = 91.1861+ 0.0057

sigma = 0.173 + 0.048
width = 2.536 + 0.020

mass (mass)

This is about 100 fbl at ECM=350 GeV.

Statistical
sensitivity if one
turns this into a Z
mass

measurement (if p-

scale is
determined by
other means) is

1.8 MeV / VN

With N in millions.

Alignment ?
B-field ?
Push-pull ?
Etc ...

Note Z mass only
known to 23 ppm
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Momentum Scale with J/psi

With 10° hadronic Z’s expect
statistical error on mass scale of <

3.4 ppm given ILD momentum  [ECRRIMBRER
resolution. simulation

J/psi from Z decay

Most of the J/psi’s are from B z ., 1107 Zs

decays.
(mostly
J/psi mass is known to 3.6 ppm.
Can envisage also improving on
the measurement of the Z mass § % y2/dof = 90/93
(23 ppm error) % S— N e U, SRS

Measured Di-muon Mass (GeV)

Double-Gaussian + Linear Fit




W Mass Measurements
1. Polarized Threshold Scan _
2. Kinematic Reconstruction T e

3. Hadronic Mass [
||'?|'| ||
P(e*) [

statistics

Method 1: Statistics limited.

backoroumnd

Method 2: With up to 1000 the LEP statistics afficiency

luminosity

and much better detectors. Can target factor ppelieivet o
of 10 reduction in systematics. systematics

experimental total

heam energy

Method 3: Depends on di-jet mass scale. theory

Plenty Z's for 3 MeV. total
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Jet Energy Scale Particle-by-Particle

One can also consider
calibrating absolutely given
the m_, uncertainty.

Need

= Tracker p-scale
= EM Cal E-scale

= Calorimeter neutral-hadron
energy scale

Can use precisely known
particle scales: A°, ni%, ¢, X.

Also fragmentation errors
(KL, n)

Likely dominated by
NH energy scale.
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High Energy Z Calibration Methods
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Effective cross-section for final states with Z

— hadrons are around 1.3 pb at 1 TeV.
(AM/M),, = 2.3x10°®

Also Zee. Cross-sections huge (20 pb) when

including ey -> eZ. Need to check

acceptance.

And Z (y).



Conclusions

« While Higgs physics will drive the program, we should
take full advantage of the data-samples that are factors of
100-1000 beyond LEP for W and Z physics.

— Momentum resolution and scale appears key to controlling the
beam energy systematic

— Need a compatible accelerator design

 Detector design needs to be focussed on systematics not
just resolution.

— But lowering our goals on resolution is in general NOT a recipe
for controlling systematics any better.

— Push-pull and feather-like detectors make alignment challenging

— Decreasing R to save money — increases confusion — increases
systematics.
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New Beam Polarization Measurement
Method

- =1 Jictri A0-10- - . : )
COI IeCt data Wlth 2 ab™" distributed 40:40:10:10 amongst polarisation configurations 1-4.

F — IP._| 80.000 = 0.064%

all 4 pairings. \/S 3TeV study [P.-| 30.000 + 0.085%
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Chan neIS Beam polarisation correlation:

P(|Pa=|, |Pe+|) = 10%



Would mW to 2 MeV be interesting ?

T | T T T | T T T | T T T | T T T
- experimental errors 68% CL:

LEP2/Tevatron: today

T | T T T | T T T | T T T | T T T
- experimental errors 68% CL:

LEPZ2/Tevatron: today
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Can test whether W and top masses are consistent with the SM
Higgs mass or MSSM with either the 126 GeV object being the
light (left plot) or heavy (right plot) CP even Higgs




