Japanese activity in Industry-Academia cooperation towards ILC

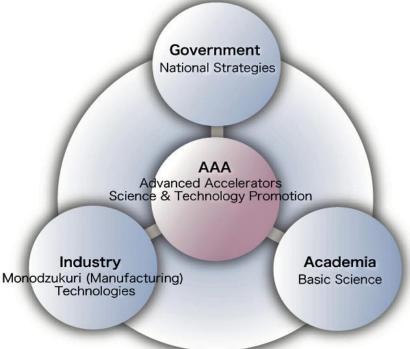
April 30, 2012

Masanori Matsuoka
Secretary General, Advance accelerator association
promoting science & technology

- Outline of AAA
- Our Activities
- Accelerator industry in Japan
- Conclusion

Outline of AAA

Technology


The Advanced Accelerator Association Promoting Science & Technology (AAA) was established in June 2008 with 76 member companies / institutes,

to study how to reach a consensus to realize *ILC* (*International Linear Collider*) in Japan, and

to promote and seek various industrial applications of advanced accelerators and technologies derived from R&D on such accelerators

with facilitating Industry-Government-Academia collaboration

History of AAA

Dec.,2008

Jun, 2008 AAA was established

July, 2008 Nonpartisan Federation of Diet members

for ILC was established

Symposium was held by AAA & Federation

M. Koshiba

R. Heuer

T. Nishioka

K. Yosano

Chief cabinet secretary Takeo Kawamura insisted,

"Promoting of basic science can make people more happy.

ILC is attractive project because it gives big dream

to young people"

T. Kawamura

April, 2010 2nd term of activity started

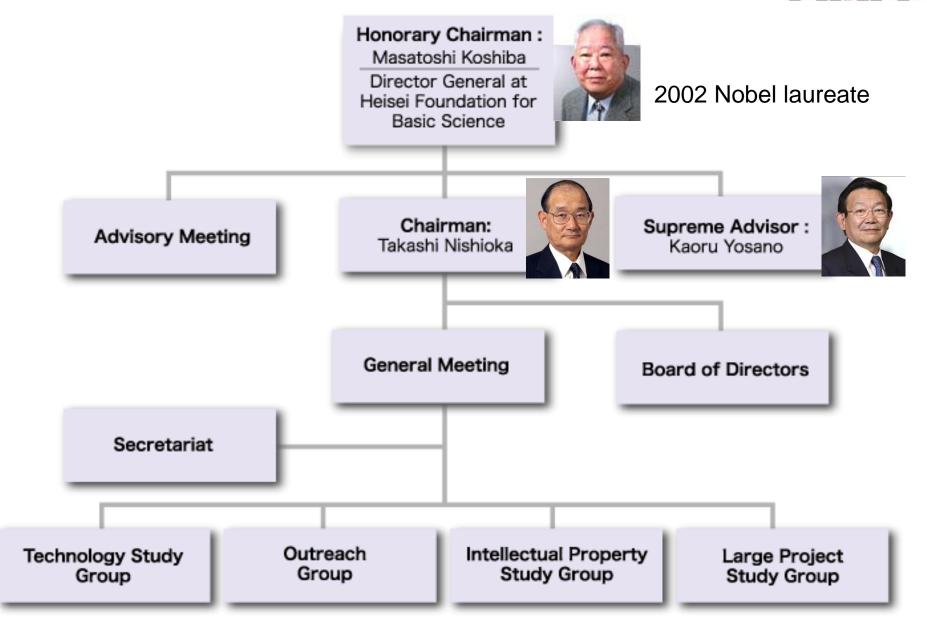
Dec., 2011 Symposium was held by AAA & Federation

Prime minister Yoshihiko Noda addressed.

April, 2012 3rd term of activity started

term of activity started

Oct., 2012 Symposium was held by AAA & JPC (Guest speaker: Prof. Rolf Heuer)


Mr. Ryu Shionoya joined symposium and addressed.

Dec., 2012 TDR completion ceremony was held by AAA & GDE

AAA Organization

Board Members

Chairman

Takashi Nishioka :Former President, Mitsubishi Heavy Industries, Ltd.

Director

Atsuto Suzuki :Director General,

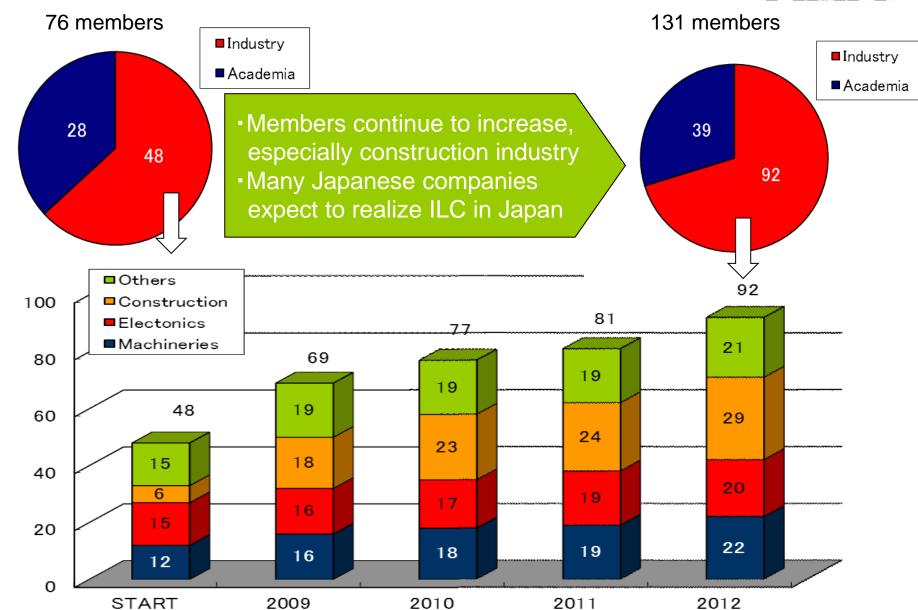
High energy accelerator Research Organization(KEK)

Yasuharu Igarashi : Executive Officer, Toshiba Corporation

Akira Maru :Senior Corporate officer, Hitachi, Ltd.

Yoshiaki Nakatani :Executive Officer, Mitsubishi electric corporation

Keijiro Minami :Senior Executive Officer, Kyocera Corporation


Akira Noda :Professor, Kyoto University

Auditor

Sachio Komamiya : Professor, University of Tokyo

Increasing of AAA Members

- Outline of AAA
- Our Activities
- Accelerator industry in Japan
- Conclusion

Mission of AAA

[Technical Study Group]

- Seek directionalities on advanced accelerator with ILC
- Integrate "manufacturing technologies" from a variety of industrial fields to create innovative scientific technologies

[Outreach Group]

Inform the public of possibilities and significance of advanced accelerator and *ILC*, through a variety events and media exposures.

[Large project Study Group]

- Study how to reach a consensus with understanding the site issue in order to realize *ILC* in Japan.
- Study proper organization for promoting *ILC* Intellectual Property Study Group]
- Study intellectual property with "ILC Project as an underlying model

- 30 Seminars
- 14 working group (WG) meetings
 - Superconducting Accelerator WG
 - □ Civil engineering WG
- Visit to Accelerator Lab.(KEK STF)
- Operation training of superconducting accelerator

Seminar Visit to Lab Training

Seminars by Technical Study Group

No.	Theme
1	Starting the technical study group
2	The status and challenges of SC accelerators
3	Accelerator and Civil Engineering
4	Superconducting RF Cavity Technologies
5	High power RF Technology
6	Advanced accelerators and Synchrotron Radiation Science
7	Advanced accelerators and Cryogenics
8	Advanced accelerators and Neutron Science
9	Advanced accelerators and Control Technologies
10	Industrial technologies, supporting advanced accelerators
11	Summary talks of technical study group and outreach group
12	Advanced accelerators and Medical applications
13	Advanced accelerators and Laser technologies
14	Summary of the first term activities
15	Report on IPAC and GDE meeting

No.	Theme
16	Refrigeration technologies
17	New applications of accelerators
18	Current and future of Medical accelerators
19	Status of ILC, Regulation of High Pressure Gases
20	Advanced accelerators and Muon Science
21	Measuring instruments and Simulation
22	Cutting-edge materials used in the accelerators
23	Superconducting technologies for the environment
24	Status and future of ILC
25	State-of-the-art accelerators for Synchrotron Radiation
26	The latest digital technologies for accelerators
27	Technologies and products of advanced accelerator components
28	Technologies of Ion accelerators
29	Operation training of superconducting accelerator
30	Superconducting magnet for neutrino beam line and neutron facility at J-PARC

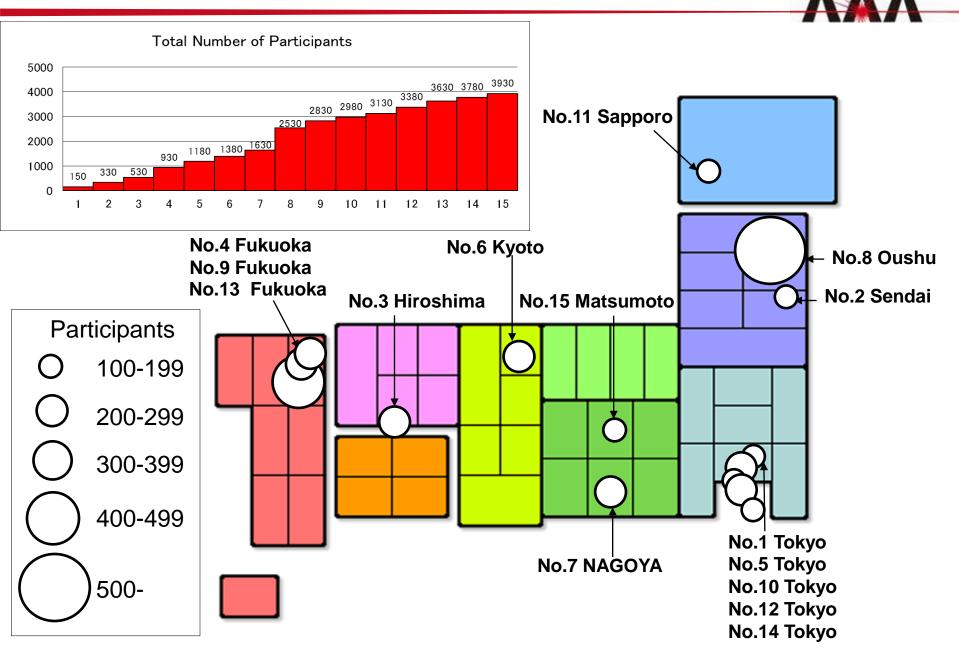
Activities of Outreach Group

4 —		•				
1 6	CV/M	α	In		h	VAArc
13)	20111	posiums	1111	aucui	•	veals
. •	\sim γ	P			•	,

■ Japanese Contribution to understanding the Universe using

Asteroid explorer "HAYABUSA",

"SUBARU" telescope and


such Accelerators "TRISTAN", "KEKB", "J-PARC", ...

- ☐ Birth of the Universe and Life
- Understanding the Universe by using the advanced accelerator from KEKB to ILC
- The advanced accelerators saving life and creating the universe
- International Linear Collider and applications of advanced accelerators
- □ ...

AAA Home page (http://www-sentan.org)

- Introductory of AAA
- About ILC
- Applications of accelerators
- Event Information
- etc.

Symposiums at the various cities in Japan

Symposiums on Advanced Accelerator

M. Yoshioka

R. D. Heuer

A. Suzuki

M. Tsujii

S. Komamiya

J. Kawaguchi

H. Yamamoto

M. le

H. Murayama

Y. Takayanagi

S. Yamashita

T. Masukawa

Activities of Large Project Study Group

(International organization)

Investigate international organizations of large scale facilities for study of *ILC*

(Site issue)

- Study how to reach a consensus of site issue
- Investigate challenges for ILC construction in Japan
- Support two candidate local governments to research how to build a global city with *ILC*
- Evaluate the Economic, Technical and Social effects of ILC

(Proposal to Government)

 Propose the policy for promoting advanced accelerator to government

Large project study Group

No.	Theme	No.	Theme	
1	Starting Large project study group	14	Radiation Restriction of the accelerators	
2	The history and current status of ITER	15	The status of ILC /	
3	Construction of J-PARC / International Collaboration at DESY	16	WG on Study for challenges of ILC construction Intermediate report on Study for challenges of ILC	
4	The history and current status of LHC /		construction	
	The experience of Spring-8	17	Intellectual property issues of ITER	
5	Intellectual Issue for Large project /	18	Report on Study for challenges of ILC construction	
6	The experience of KEKB Intellectual property Issues in conducting R&D with International collaboration	19	How to promote the accelerator industry / Intermediate report of Study for challenges of ILC construction	
7	The experience of High performance computing infrastructure development / International large project of Astronomy	20	Activities at the candidate sites, Tohoku and Kyushu / WG on Promoting collaboration with industry, government and academia	
8	Management of Big science project / The experience of the super express export to Taiwan	21	WG on Promoting collaboration with industry, government and academia WG on Study for ILC construction	
9	nternational political aspect of International science		•	
	project ,for example International Space Station 22		Spring-8 & SACLA contributing Drug Development /	
10	Innovative outreach; How do we publicize the future possibility?		WG on Promoting collaboration with industry, government and academia	
11	Marketing research for the accelerators	23	Accelerators for industry and medical / WG on Promoting collaboration with industry,	
12	Experience of HIMAC and the future of heavy		government and academia	
13	Policy of Atomic energy based on the energy and environmental issues	24	Current status of ILC / WG on Promoting collaboration with industry, government and academia	

Accelerator- Pyramid

[Number in the world]

1~5

SNS LCLS

10 ~20

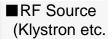
More than 100

Radio Therapy

Elemental technologies, Cost reduction, **More than 10,000** Sign der disettion (USD 3.5Billion*)

(USD 500Billion*)

High end Accelerator for particle **Physics**


Large project for science & technology

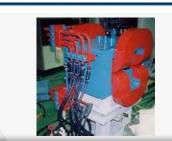
Innovative technologies, New applications, ... Advanced accelerator for New usage development

General purpose machine (Medical, Industry, · · ·

Products derived from accelerator technologies

"Accelerators for America's Future", 2010, Department of Energy, USA

■RF Component (Waveguide, Coupler etc.)



RF Technology

- ■Superconducting Magnet
- Superconducting Cavity Cryostat

Superconducting Technology

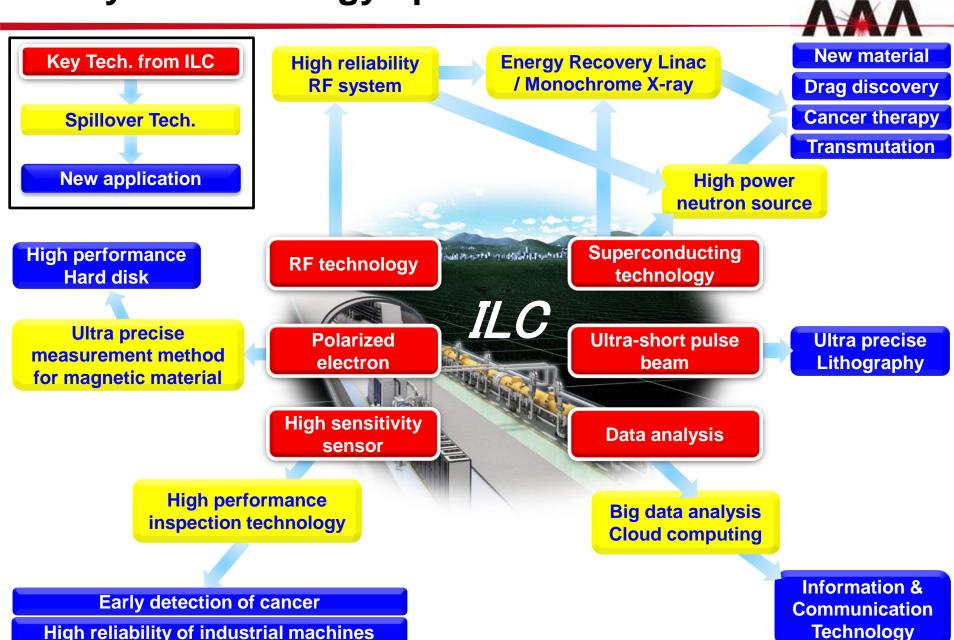
Electromagnet

■Beam Position
Detection &
Processing

RF & Beam Control Technology

■Vacuum Pump

■ Vacuum Chamber



Vacuum Technology

Detector

Study of technology spillover effect of ILC

- Outline of AAA
- Our Activities
- Accelerator industry in Japan
- Conclusion

Japanese companies contribute to the advanced accelerator projects in the world

Companies which have contributed to LHC

Company	Products
Toshiba corporation	Superconducting magnet, TDC chip
Furukawa, Ltd.	Superconducting cable
IHI corporation	1.8K refrigeration units
Nippon steel, Ltd.	Non-magnetic steel plate
JFE steel corporation	Non-magnetic steel plate
Kaneka corporation	Insulation film for SC wire
Hitachi Cable, Ltd.	Superconducting cable
Kawasaki Heavy Industries, Ltd.	Cryostat for Liquid-Ar, CMS end york
Sumitomo Chemical	Aluminum for SC Cable
Kyocera corporation	Ceramics duct
Fujikura, Ltd.	Rad-hard optical fibers
Hamamatsu photonics K. K.	Photo-tube, Silicon sensor, SCT module
Rinei Seiki, Co., Ltd.	TGC(Thin Gap Chamber) trigger chamber
Nippon Mektron, Ltd.	Cu/Polyimide flexible circuits
Arisawa Manufacturing Co., Ltd.	Polyimide film

Japanese companies contribute to the advanced accelerator projects in the world

Companies which have contributed to Euro-XFEL

Company	Products
Tokyo Denkai Co., Ltd.	Pure Niobium Sheet
Toshiba Electrical Tubes and Devices Co., Ltd.	L-band Klystron
Kyocera corporation	Feed through flange

Companies which have contributed to other projects

Company	Products
Mitsubishi Heavy Industries	S-band accelerator Superconducting accelerator
Mitsubishi Electric	Superconducting accelerator Superconducting magnet
Toshiba corporation	Normal conducting cavity
Toyama	Beam line instruments

R&D on Superconducting cavity

- MHI and Hitachi are reaching 35 MV/m of accelerating field by vertical test.
- □ Hitachi reached 41 MV/m with HOM coupler.
- Toshiba reached 35 MV/m without HOM coupler.
- MHI cavities were installed in the cryomodule in order to conduct the horizontal test called S1-Global.

year	# 9-cell cavities qualified	# of Labs reaching 35 MV/m processing	# of Industrial manufacturers reaching 35 MV/m fabrication
2006	10	1 DESY	2 ACCEL, ZANON
2011	41	4 DESY, JLAB, FNAL, KEK	4 RI, ZANON, AES, <mark>MHI</mark> ,
2012	(45)	5 DEY, JLAB, FNAL, KEK, Cornell	5 RI, ZANON, AES, MHI, Hitachi

Conclusion

- AAA have promoted the science and technology of the accelerators and *ILC* project.
- New ideas and products have been created through the activities of AAA.
- AAA conducted symposiums to publicize the *ILC* and the advantage of promoting accelerator industry.

We will continue to strive for realizing ILC in Japan