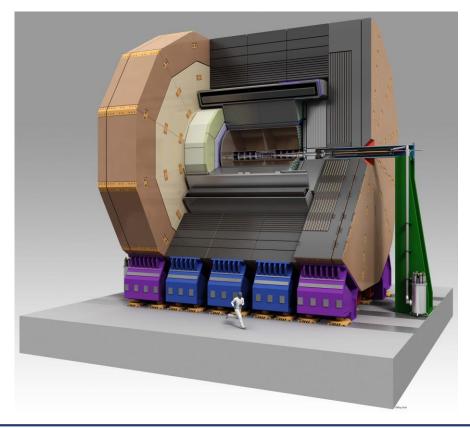

ILD & SiD concepts and R&D David Attié Club 'ILC Physics Case'

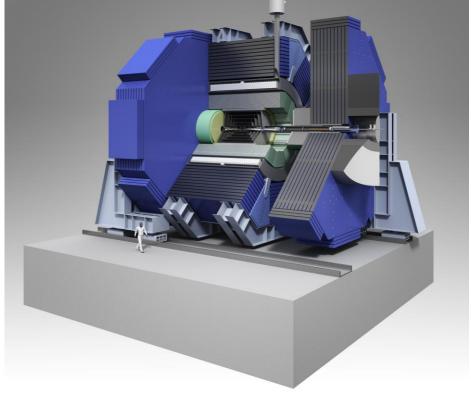
CEA Saclay June 23, 2013

Introduction: Physics Case at ILC

- Next collider: linear e+e- collider, length: $\sim 31 \mathrm{km}$
- Tunable center of mass energy of 200-500 GeV
- Two detectors with push-pull concept
- Both need to fit into Particle Flow concept

Two detector concepts

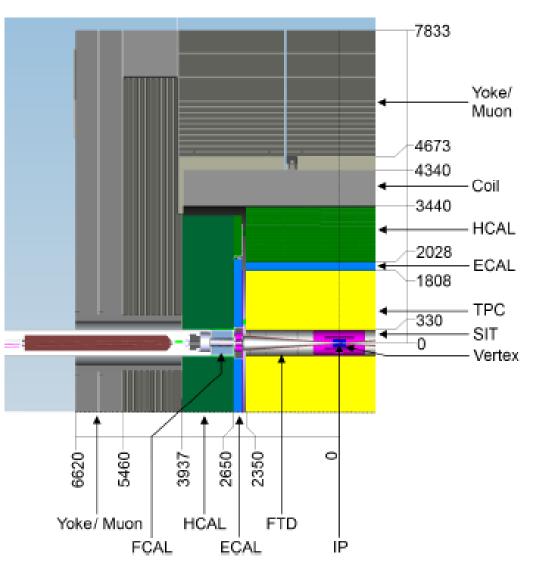



• LoI: 2009 (SiD)-2010 (ILD)

• DBD: 2012 (ILD)-2013 (SiD)

INTERNATIONAL LARGE DETECTOR

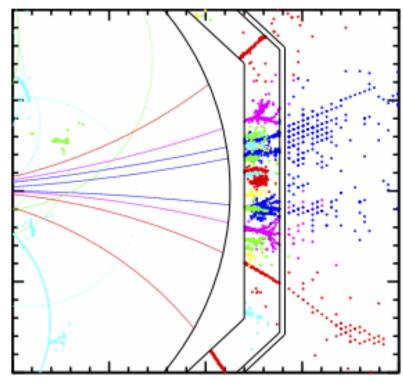
SILICON DETECTOR



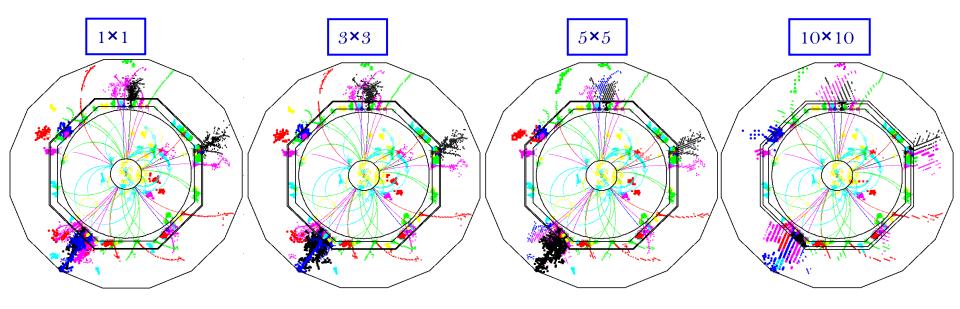
Side (quadrant) views

ILD

SID



Particule Flow Algorithm (PFA) Approach


- Traditionally, $E_{jet} = E_{ECAL} + E_{HCAL}$
- Multi-jet energy resolution needed at the ILC: $(\sigma_E/E \approx 0.3/\sqrt{E})$
- Solution = PFA: cross-checking of the measurements of all sub-detectors which will be highly segmented from IP
- Trackers > charged particles
- Calorimeters > separation charged/neutral particles

Particule Flow Algorithm (PFA) Approach

• Analogue scintillator tile HCAL: change tile size from 1×1 → 10×10 mm²

- 1×1 cm² and 3×3 cm² cell size
- Cell size $> 5 \times 5$ cm² degrades PFA

Concept overview for SiD

- 5T magnet
- Silicon-based tracking
 - Vertex detector: 5 Si pixel layers, pixel size of 20 \times 20 μm^2
 - Si main tracker: Si strip of 5 nested cylinders in central region and 4 disks, pitch 50 μm
- Main calorimeters (barrel+2 end-caps) inside solenoid with imaging capabilities
 - 30 Si active layers using 5 × 5 mm² Si pixels between W absorber
 (Two other technologies (GEM & Micromegas) are currently prototyped and evaluated as potential options)
- Forward calorimeters (compact ECALs): LumiCal + BeamCal
 - 30 layers of semiconductor-tungsten technology
- Muon system: few 10³ m² scintillator (or RPCs)

Concept overview for SiD

ilc

Table 1.1.1: Key parameters of the baseline SiD design. (All dimension are given in cm).

SiD Barrel	Technology	Inner radius	Outer radius	z extent
Vertex detector	Silicon pixels	1.4	6.0	± 6.25
Tracker	Silicon strips	21.7	122.1	\pm 152.2
ECAL	Silicon pixels-W	126.5	140.9	\pm 176.5
HCAL	RPC-steel	141.7	249.3	\pm 301.8
Solenoid	5 Tesla SC	259.1	339.2	\pm 298.3
Flux return	Scintillator-steel	340.2	604.2	\pm 303.3
SiD Endcap	Technology	Inner z	Outer z	Outer radius
Vertex detector	Silicon pixels	7.3	83.4	16.6
Tracker	Silicon strips	77.0	164.3	125.5
ECAL	Silicon pixel-W	165.7	180.0	125.0
HCAL	RPC-steel	180.5	302.8	140.2
Flux return	Scintillator/steel	303.3	567.3	604.2
LumiCal	Silicon-W	155.7	170.0	20.0
BeamCal	Semiconductor-W	277.5	300.7	13.5

Concept overview for ILD

- 3.5T magnet
- Vertex detector (VTX):
 - -MAPS
- Silicon strip detector (SIT):
- Time Projection Chamber (TPC):
 - -MPGD readout (GEM or Micromegas) with <1 mm pad size
- Calorimeters (layers of W and Fe):
 - -ECAL: Si diodes or scintillators (30 samples in depth)
 - -HCAL: 3×3cm² scintillator tiles or 1×1cm² gas based (48 long. samples)
- Forward calorimeters (compact ECALs): LumiCal + BeamCal
 - 30 layers of semiconductor-tungsten technology
- Muon system:
 - -Scintillator strips or resistive chambers (RPCs)

Concept overview for ILD

Table 1.2.1: List of the main parameters of the ILD detector for the barrel part.

Table 1.2.2: List of the main parameters of the ILD detector for the end cap part.

Barrel	system						End cap	system	ı				
System	R(in)	R(out [mm]) z	comments			System	z(min) z(max	r(min) r(max)	, comments		
VTX	16	60	125	3 double layers layer 1: $\sigma < 3\mu m$	Silicon pixel sensors, layer 2: $\sigma < 6\mu m$	layer 3-6 $\sigma < 4\mu m$	FTD ETD	220 2420	[mm] 371 2445	419- 1822	2 pixel disks 5 strip disks 2 silicon strip layers	$\sigma = 2 - 6\mu m$ $\sigma = 7\mu m$ $\sigma = 7\mu m$	
- SIT - SET - TPC	153 1811 330	300 1808	644 2300 2350	2 silicon strip layers 2 silicon strip layers MPGD readout	$\sigma = 7\mu m$ $\sigma = 7\mu m$ $1 \times 6 \text{mm}^2 \text{ pads}$	$\sigma = 60 \mu m$ at zero drift	ECAL	2450	2635		W-absorber	SiECAL ScECAL	Si readout layers Scintillator lay- ers
ECAL	1843	2028	2350	W absorber	SiECAL ScECAL	30 Silicon sensor layers, 5×5 mm ² cells 30 Scintillator layers, 5×45 mm ² strips	HCAL	2650	3937	335- 3190	Fe absorber	AHCAL SDHCAL	48 Scintillator layers $3 \times 3 \text{cm}^2$ cells, analogue 48 gas RPC layers $1 \times 1 \text{cm}^2$ cells, semi- digital
HCAL	2058	3410	2350	Fe absorber	AHCAL SDHCAL	48 Scintillator layers, $3 \times 3 \text{cm}^2$ cells, analogue 48 Gas RPC layers, 1×1 cm ² cells, semi- digital	BeamCal Lumical LHCAL	3595 2500 2680	3715 2634 3205	20- 150 76- 280 93- 331	W absorber W absorber W absorber	30 GaAs read- out layers 30 Silicon layers	
Coil Muon	3440 4450	4400 7755	3950 2800	3.5 T field 14 scintillator layers	2λ		Muon	2560		300- 7755	12 scintillator layers		

SiD costs

Table 5.1.2: Conversion rate based on purchase power parity used in the cost estimate.

currency	Dollar	Euro	Yen	
ILCU	1	0.9732	127.3	

Table 12.3.1: Summary of Costs per Subsystem.

	M&S Base (M US-\$)	M&S Contingency (M US-\$)	Engineering (MY)	Technical (MY)	Admin (MY)
Beamline Systems	3.7	1.4	4.0	10.0	
VXD	2.8	2.0	8.0	13.2	
Tracker	18.5	7.0	24.0	53.2	
ECAL	104.8	47.1	13.0	288.0	
HCAL	51.2	23.6	13.0	28.1	
Muon System	8.3	3.0	5.0	22.1	
Electronics	4.9	1.6	44.1	41.7	
Magnet	115.7	39.7	28.3	11.8	
Installation	4.1	1.1	4.5	46.0	
Management	0.9	0.2	42.0	18.0	30.0
	314.9	126.7	186.0	532.1	30.0

≈860 M \$

ILD costs

ilc

Table 5.3.5: Summary table of the cost estimate of the ILD detector. Depending on the options used the cost range is between 336 Mio ILCU and 421 Mio ILCU.

System	Option	Cost [MILCU]	Mean Cost [MILCU]
Vertex			3.4
Silicon tracking	inner	2.3	2.3
Silicon tracking	outer	21.0	21.0
TPC		35.9	35.9
ECAL			116.9
	SiECAL	157.7	
	ScECAL	74.0	
HCAL			44.9
	AHCAL	44.9	
	SDHCAL	44.8	
FCAL		8.1	8.1
Muon		6.5	6.5
Coil, incl anciliaries		38.0	38.0
Yoke		95.0	95.0
Beamtube		0.5	0.5
Global DAQ		1.1	1.1
Integration		1.5	1.5
Global Transportation		12.0	12.0
Sum ILD			391.8

SiD R&D

Project Descriptor	Institution(s)	Past	Current	Future
		Funding	Funding	Funding
ENGINEERING				
SC Solenoid	Fermilab, SLAC	DOEL	DOEL	DOEL
Flux Return	Fermilab, SLAC, Wisc.	DOEL	DOEL	DOEL
MDI/Push-pull	Fermilab, SLAC	DOEL	DOEL	DOEL
General	Fermilab, SLAC, etc.	DOEL	DOEL	DOEL
VERTEX				
Chronopix	Yale, Oregon, SLAC	LCDRD	sLCDRD, DOEL	ULCDP, DOEL
CAPS	Hawaii	LCDRD	sLCDRD	ULCDP
ISIS	Bristol, Oxford, RAL	UK,	internal	new fund.
		term. 2008		
MAPS	Strasbourg	France	France	France
Sensor Powering	Fermilab	DOEL	DOEL	DOEL
Sensor Thinning	Fermilab, Cornell	DOEL	DOEL	DOEL
Vertex Mechanics	Washington,	LCDRD,	DOEL	ULCDP,
	Fermilab	DOEL		DOEL
3D Sensor	Fermilab	DOEL	DOEL	DOEL
3D Sensor Sim.	Cornell		DOEL	ULCDP
TRACKING				
Alignment	Michigan, Spain,	LCDRD,	Spain	ULCDP,
	Spain	Spain		Spain
DC-DC converters	Yale, SLAC	LCDRD,	DOEL	ULCDP,
		DOEL		DOEL
DS/SS Si Det.	Kyungpook N Univ.	Korea	Korea	Korea
& calor (eg. lum)				
Forward Tracking	Spain	Spain	Spain	Spain
Sensor QA, cables	New Mexico			ULCDP
Sensor QA	UC Santa Cruz	LCDRD	sLCDRD	ULCDP
Tracking Sim.	Santa Cruz, Oregon,	DOEL	DOEL	DOEL
	SLAC, Fermilab			ULCDP

Table 6.1: SiD R&D Projects, part 1. Definitions: LCDRD is 3 year US DOE/NSF Linear Collider Detector R&D grant beginning 2005; sLCDRD is 2008-9 LCDRD supplement; DOEL is US DOE laboratory funding; ULCDP is SiD US University LC Detector Proposal to DOE/NSF on February 18, 2009.

Project Descriptor	Institution(s)	Past	Current	Future
		Funding	Funding	Funding
CALORIMETRY				
Beamcal, Readout/Sim	Colorado, SLAC	LCDRD,	DOEL	ULCDP,
		DOEL		DOEL
Dual Readout	Caltech, Fermilab	DOEL	DOEL	DOEL
				ULCDP
ECAL Mechanics	Annecy, SLAC	France,	France,	France,
		DOEL	DOEL	DOEL
GEM HCAL	UTA, MIT	LCDRD		ULCDP
Micromegas HCAL	Annecy	France	France	France
MAPS ECAL	B'ham, Bristol,	UK	SPiDeR	SPiDeR
	Imperial, Oxford, RAL			
PFA	Iowa, MIT,	LCDRD,	DOEL	ULCDP,
	ANL, SLAC	DOEL		DOEL
Radhard Bmcal Sens.	UCSC, SLAC		DOEL	ULCDP,
				DOEL
RPC HCAL	BU, Iowa, ANL, FNAL	LCDRD,	sLCDRD,	ULCDP,
		DOEL	DOEL	DOEL
Scint HCAL	NIU	LCDRD		ULCDP
SiPM Readout	Fermilab, SLAC	DOEL	DOEL	DOEL
Si-W ECAL & Readout	Oregon, Davis,	LCDRD,	sLCDRD,	ULCDP,
	SLAC, BNL	DOEL	DOEL	DOEL
MUON				
RPC Muon/HCAL	Princeton	LCDRD		ULCDP
RPC Muon System	Wisconsin	LCDRD		ULCDP
SiPM Muon System	WS, IU, ND, NIU,	LCDRD,	sLCDRD,	ULCDP,
	Fermilab	DOEL	DOEL	DOEL
BEAMLINE MEAS.				
Energy Spectrometer	Notre Dame, Oregon	LCDRD	sLCDRD	ILC accel?
Polarimeter	Iowa	LCDRD		ILC accel?

Table 6.2: SiD R&D Projects, part 2. See table 6.1 for definitions.

• MAPS: monolithic active pixel sensor

• DEPFET: active pixel detectors for a future linear e+e- collider

Micromegas TPC in Saclay L: 4.7m