The ILC Higgs White Paper

Tim Barklow (SLAC)

Oct 14, 2013

ILC HIGGS WHITE PAPER

arXiv:1310.0763v1 [hep-ph] 2 Oct 2013

AUTHORS

D.M. Asner¹, T. Barklow², C. Calancha³, K. Fujii³, N. Graf², H. E. Haber⁴, A. Ishikawa⁵,

S. Kanemura⁶, S. Kawada⁷, M. Kurata⁸, A. Miyamoto³, H. Neal², H. Ono⁹, C. Potter¹⁰, J. Strube¹¹,

T. Suehara⁵, T. Tanabe⁸, J. Tian³, K. Tsumura¹², S. Watanuki⁵, G. Weiglein¹³, K. Yagyu¹⁴,

H. Yokoya⁶

¹Pacific Northwest National Laboratory, Richland, USA ²SLAC National Accelerator Laboratory, Menlo Park, USA ³KEK, Tsukuba, Japan ⁴University of California, Santa Cruz, USA ⁵ Tohoku Univesity. Sendai, Japan ⁶University of Toyama, Toyama, Japan ⁷Hiroshima University, Hiroshima, Japan ⁸University of Tokyo, Tokyo, Japan ⁹Nippon Dental University, Niigata, Japan ¹⁰University of Oregon, Eugene, USA ¹¹CERN, Geneva, Switzerland ¹²University of Nagoya, Nagoya, Japan ¹³DESY, Hamburg, Germany ¹⁴National Central University, Zhongli, Taiwan

Contents

	Table o	of Conte	nts	5		
General ILC Intro	Introduction					
	1 Higgs Theory			11		
	1.1 Introduction: the Higgs mechanism		uction: the Higgs mechanism	11		
		1.1.1	Vector boson mass generation and the unitarity of $VV \rightarrow VV$ scattering			
			(V = W or Z)	12		
		1.1.2	Chiral fermion mass generation and the unitarity of $VV o far{f}$ scattering $~$.	13		
	1.2	Theor	etical structure of the Standard Model Higgs boson	13		
		1.2.1	Tree level Higgs boson couplings	13		
		1.2.2	Higgs couplings at one-loop	15		
		1.2.3	Higgs decays	17		
		1.2.4	Higgs production at the ILC	18		
		1.2.5	Vacuum Stability	20		
Summary of Higgs Theory	1.3	The t	wo-Higgs-doublet model (2HDM)	21		
Summary of miggs meory		1.3.1	Model-independent treatment	22		
		1.3.2	Constraints on 2HDM scalar potential parameters	24		
circa Summer 2013		1.3.3	Tree-level Higgs boson couplings-the general case	25		
		1.3.4	Tree-level Higgs boson couplings—the CP-conserving case	27		
		1.3.5	The decoupling/alignment limit of the 2HDM	29		
		1.3.6	Higgs production at the ILC	31		
		1.3.7	Special forms for the Higgs-fermion Yukawa interactions	32		
		1.3.8	Constraints due to flavor physics	36		
		1.3.9	The inert 2HDM	41		
		1.3.10	The MSSM Higgs sector	43		
	1.4	Other	extended Higgs sectors	48		
		1.4.1	Constraints from the tree-level rho parameter	48		
		1.4.2	An upper bound for the Higgs coupling to vector boson pairs	50		
		1.4.3	Adding Higgs singlets	51		
		1.4.4	Adding Higgs triplets	52		
		1.4.5	The NMSSM Higgs sector	54		
	1.5	Model	-independent treatments of Higgs properties	56		
		1.5.1	Effective Lagrangian treatments	57		
	1.6	1.5.2 Altorr	Simplified approach for the analysis of Higgs couplings	5/		
	1.0	Altern	The Higgs becan as a provide Caldstone becan	50		
		1.0.1	The Higgs boson as a pseudo-goldstone boson	09		
		1.0.2	The miggs boson as a dilaton	00		

Contents

	1	.7 Probing the properties of the signal at 125 GeV	61
		1.7.1 Present status and prospects for the upcoming LHC runs	61
		1.7.2 Experimental precision required to discriminate between different possible	
		interpretations	63
		1.7.3 Examples of analyses in different models	63
		1.7.4 A requested accuracy for the <i>hhh</i> determination from electroweak baryogenesis	s 67
		1.7.5 Value added by the ILC Higgs program post-LHC	69
	2 I	LC Accelerator Parameters and Detector Concepts	71
	2	.1 ILC Accelerator Parameters	71
		2.1.1 TDR Baseline ILC 250 - 500 GeV	71
		2.1.2 Luminosity and Energy Upgrade Options	74
Luminosity based on		2.1.3 Gamma-Gamma Option	75
		2.1.4 Energy/Luminosity Running Scenarios	76
	2	.2 Detector Concepts	77
		2.2.1 ILD	77
		2.2.2 SiD	78
	2	.3 Systematic Errors	81
		2.3.1 Flavor Tagging	81
		2.3.2 Luminosity	83
		2.3.3 Polarization	84
		2.3.4 Systematic Error Summary	84
	3 H	liggs Mass, ZH Cross Section, Spin and CP	85
	3	.1 Higgs Mass and $\sigma(ZH)$ Measurements	85
		3.1.1 l^+l^-h at $\sqrt{s}=250~{\rm GeV}$	85
		3.1.2 l^+l^-h at $\sqrt{s} = 500$ GeV	85
		3.1.3 $q\bar{q}h$ at $\sqrt{s} = 500$ GeV	87
	3	.2 Higgs Spin Measurement	88
	3	.3 Higgs Sector CP Measurements	89
		3.3.1 Introduction	89
		3.3.2 $e^+e^- \rightarrow ZH$	89
		3.3.3 $H \rightarrow \tau^+ \tau^-$	90
		3.3.4 $e^+e^- \rightarrow ttH$	90
	4 (ross Section Times Branching Ratio Measurements I	93
	4	.1 $h \to b\bar{b}, \ c\bar{c}, \ gg$	93
ADDV NOW POSt-DRD		4.1.1 250 GeV and 350 GeV	93
hally New POSt-DDD		4.1.2 500 GeV	94
Studioo		4.1.3 1 TeV	95
Sludies	4	.2 $h \rightarrow WW^*$	96
		4.2.1 500 GeV	96
		4.2.2 1 TeV	96
	4	.3 $h \rightarrow \tau^+ \tau^-$	98
		4.3.1 250 GeV	98
		4.3.2 500 GeV	98

Many I	New	Post-	DBD
Studie	S		

	5	Cross Section Times Branching Ratio Measurements II 5.1 $h \rightarrow ZZ^*$ 5.1.1 Event reconstruction for $h \rightarrow ZZ^*$ 5.1.2 Multi-Variate Analysis 5.1.3 Results for $f^+f^-h \rightarrow ZZ^*$ 5.2 $h \rightarrow \gamma\gamma$ 5.3 $h \rightarrow \mu^+\mu^-$ 5.4 Invisible Higgs Decays 5.5 Top Yukawa Coupling Measurement 5.6 Higgs Self Coupling Measurement 5.7 Cross Section Times Branching Ratio Summary	101 101 102 104 104 105 105 105 106 107 108
Model Independent Fits as Usual; Also Model Dependent Fits for LHC Comparison	6	 Higgs Couplings, Total Width and Branching Ratios 6.1 Model Independent Determination of Higgs Couplings	109 109 0s111 111 111 113 113
	7	Non-Minimal Higgs Models 7.1 Direct Production of Non-Minimal Higgs Bosons 7.1.1 Neutral Higgs pair production at ILC 7.1.2 Charged Higgs boson production 7.2 Measurements of tan β at the ILC	117 117 117 117 118 120
	8	Gamma-Gamma and e-Gamma Option 8.1 Production Cross Sections and Luminosity Spectra 8.2 Higgs Studies 8.2.1 h_{SM} Mass Measurement 8.2.2 Branching Fractions 8.2.3 Determining CP Nature of a Higgs Boson 8.3 Understanding gamma-gamma backgrounds at the ILC 8.4 Summary	123 124 124 126 127 129 132 132
	9 Bib	Summary liography	133 137

ILC: e^+e^- Linear Collider at 250 GeV < \sqrt{s} < 1000 GeV

Energy/Lumi Scenarios for White Paper

- Each scenario corresponds to accumulated luminosity at a certain point in time.
- Assumption: run for 3X10⁷ s at baseline lumi at each of Ecm=250,500,1000 GeV, in that order. Then go back and run for 3X10⁷ s at upgrade lumi at each of Ecm=250,500,1000 GeV.

Nickname	Ecm(1)	Lumi(1)	+	Ecm(2)	Lumi(2)	+	Ecm(3)	Lumi(3)	Runtime	Wallplug E
	(GeV)	(fb^{-1})		(GeV)	(fb^{-1})		(GeV)	(fb^{-1})	(yr)	(MW-yr)
ILC(250)	250	250							1.1	130
ILC(500)	250	250		500	500				2.0	270
ILC(1000)	250	250		500	500		1000	1000	2.9	540
ILC(LumUp)	250	1150		500	1600		1000	2500	5.8	1220

 Table 2.6. Expected b-tagging uncertainties at various selection efficiencies.

<i>b</i> -tag efficiency study		
for White Paper	Efficiency	Uncertainty
	80%	0.46%
T. Suehara , Tohoku Univ. &	70%	0.53%
	60%	0.57%
I. Tanabe, Univ Tokyo	50%	0.58%

Table 2.7. Summary of selection for the fake rate measurement. Here the b tag selection is such that one of the two jets will pass the b tag requirement at the specified efficiency.

Process	Before selection	After selection	$b \text{ tag } (\epsilon_b = 80\%)$	$b \text{ tag } (\epsilon_b = 50\%)$
$WW \to \ell \nu cs$	1.3×10^{6}	1.3×10^5 (10%)	11310 (8.7%)	234 (0.18%)
$WW \rightarrow \ell \nu u d$	1.3×10^{6}	1.3×10^5 (10%)	2080 (1.6%)	130 (0.1%)
$ZZ \to \tau \tau b \overline{b}$	8500	85 (1%)	82 (96%)	64 (75%)

 Table 2.8.
 Systematic errors assumed throughout the paper.

	Baseline	LumUp
luminosity	0.1%	0.05%
polarization	0.1%	0.05%
b-tag efficiency	0.3%	0.15%

Theory Errors at ILC

ILC model independent global coupling fit using 32 σ -BR measurements Y_i and σ_{ZH} measurement Y_{33}

$$\chi^{2} = \sum_{i=1}^{i=33} \left(\frac{Y_{i} - Y_{i}'}{\Delta Y_{i}}\right)^{2},$$

$$Y_i^{'} = F_i \cdot \frac{g_{HZZ}^2 g_{Hb\bar{b}}^2}{\Gamma_0}$$
, or $Y_i^{'} = F_i \cdot \frac{g_{HWW}^2 g_{Hb\bar{b}}^2}{\Gamma_0}$, or $Y_i^{'} = F_i \cdot \frac{g_{Htt}^2 g_{Hb\bar{b}}^2}{\Gamma_0}$

$$F_i = S_i G_i \quad \text{where } S_i = \left(\frac{\sigma_{ZH}}{g_Z^2}\right), \ \left(\frac{\sigma_{\nu\bar{\nu}H}}{g_W^2}\right), \text{ or } \left(\frac{\sigma_{t\bar{t}H}}{g_t^2}\right), \text{ and } G_i = \left(\frac{\Gamma_i}{g_i^2}\right).$$

The cross section calculations S_i do not involve QCD ISR. The partial width calculations G_i do not require quark masses as input.

We are confident that the total theory errors for S_i and G_i will be at the 0.1% level at the time of ILC running.

 $\sigma(e^+e^- \rightarrow ZH)$ at ILC

- Almost all ILC Higgs measurements are measurements of σ •BR .
- One crucial measurement is different: the Higgs recoil measurement of $\sigma(e^+e^- \rightarrow ZH)$.
- σ_{ZH} is the key that unlocks the door to model independent measurements of the Higgs BR's and Γ_{tot} at the ILC.

 $\sqrt{s} = 250 \text{ GeV}$

 $\sigma(e^+e^- \rightarrow ZH)$: New Analyses at $\sqrt{s} = 500 \text{ GeV}$

Combining all channels for 500 fb⁻¹ at $\sqrt{s} = 500$ GeV: $\Delta\sigma(e^+e^- \rightarrow ZH) / \sigma(e^+e^- \rightarrow ZH) = 3.0\%$ Combining 250 fb⁻¹ at $\sqrt{s} = 250$ GeV & 500 fb⁻¹ at $\sqrt{s} = 500$ GeV: $\Delta\sigma(e^+e^- \rightarrow ZH) / \sigma(e^+e^- \rightarrow ZH) = 2.0\%$

 $\sigma \bullet BR(H \to \tau^+ \tau^-)$: New Analysis at $\sqrt{s} = 250 \text{ GeV}$

 $H \rightarrow \tau^{+}\tau^{-}$ $\Delta \sigma \cdot B / \sigma \cdot B = 4.2\%$ for 250 fb⁻¹ @ $\sqrt{s} = 250$ GeV S. Kawada & T. Takahashi (Hiroshima Univ) K. Fujii (KEK)

T. Suehara & T. Tanabe (Univ Tokyo)

$\sigma \bullet BR(H \to b\overline{b})$: New Analysis at $\sqrt{s} = 500 \text{ GeV}$

TABLE II: The reduction table for signal and backgrounds in the analysis of $\nu \bar{\nu} H \rightarrow \nu \bar{\nu} b \bar{b}$ at 500 GeV. The cut names are explained in text. $\nu \bar{\nu} H$ has two types, one of signal WW-fusion process, the other from ZH process. The number of signal events after Cut5 in the parenthesis is for $H \rightarrow b \bar{b}$.

Process	expected	pre-selection	Cut1	Cut2	Cut3	Cut4	Cut_5
$\nu \bar{\nu} H(\text{fusion})$	7.47×10^4	59698	54529	54048	35598	34278	299199 (28598)
$\nu \bar{\nu} H(ZH)$	1.02×10^{4}	7839	7301	7224	4863	1951	1512
4f_sznu_sl	2.79×10^{5}	234259	203489	202977	44943	39125	3957
4f_sw_sl	2.43×10^{6}	228436	135164	121791	1495	911	132
4f_zz_sl	1.83×10^{5}	102172	60684	59865	13036	5736	461
4f_ww_sl	2.78×10^{6}	653997	287428	250944	3851	1145	176
4f_sze_sl	9.41×10^{5}	65011	1311	1259	91.1	40.7	5.51
6f_yyveev	6.05×10^3	931	306	104	96.6	87.4	20.4
6f_yyvelv	2.37×10^4	5450	2425	1116	997	907	237
6f_yyvllv	2.36×10^4	8009	4272	2813	2556	2383	674
BG	$6.68 imes 10^6$	1.31×10^{6}	702379	648094	71929	52285	7176
significance	16.6	35.0	43.3	44.6	106	114	150

 $H \rightarrow b\overline{b}$ $\Delta \sigma \cdot B / \sigma \cdot B = 0.7\%$ for 500 fb⁻¹ @ $\sqrt{s} = 500$ GeV J.Tian & K. Fujii (KEK) C. Dürig & J. List (DESY)

 $\sigma \bullet BR(H \to WW^*)$: New Analysis at $\sqrt{s} = 500 \text{ GeV}$

 $H \rightarrow WW^*$ $\Delta \sigma \cdot B / \sigma \cdot B = 2.4\%$ for 500 fb⁻¹ @ $\sqrt{s} = 500$ GeV J.Tian & K. Fujii (KEK) C. Dürig & J. List (DESY)

 $\sigma \bullet BR(H \to \gamma \gamma)$: New Analysis at $\sqrt{s} = 250 \& 500 \text{ GeV}$

 $H \rightarrow \gamma \gamma$

 $\Delta \sigma \cdot B / \sigma \cdot B = 34\%$ for 250 fb⁻¹ @ $\sqrt{s} = 250$ GeV

 $\Delta \sigma \cdot B / \sigma \cdot B = 23\%$ for 500 fb⁻¹ @ $\sqrt{s} = 500$ GeV

C. Calancha (KEK)

 $\sigma \bullet BR(H \to ZZ^*)$: New Analysis at $\sqrt{s} = 250 \text{ GeV}$

 $H \rightarrow ZZ^*$

 $\Delta \sigma \cdot B / \sigma \cdot B = 18\%$

H. Neal, SLAC

for 250 fb⁻¹ @ $\sqrt{s} = 250$ GeV

Table 5.3. Composition of the events passing all analysis selections for the polarizations $P(e^-) = +80\%$, $P(e^+) = -30\%$ and an integrated luminosity of 250 fb⁻¹ collected by SiD at a center of mass energy of 250 GeV.

	$h \rightarrow ZZ^*$
	(%)
$e^+e^- \rightarrow 2$ fermions	50
$e^+e^- \rightarrow 4$ fermions	462
$e^+e^- \rightarrow 6$ fermions	0
$\gamma\gamma \rightarrow X$	0
$\gamma e^+ \to X$	0
$e^-\gamma \to X$	0
$qqh \rightarrow ZZ^*$	68
$eeh, \mu\mu h \rightarrow ZZ^*$	24
$\tau \tau h \rightarrow ZZ^*$	3
$\nu\nu h \rightarrow ZZ^*$	49

	TM\	/A over	training	g check i	for clas	sifier: Bl	т		
xb /N	10	s B	ignal (tes ackgrou	st sample) nd (test sa	ample)	 Signal Backg 	(training	sample) aining sam	
p (N/L)	8	Kolmog	jorov-Smir	nov test: si	gnal (back	ground) pro	bability = 0).000214 (0.	0759)
	6	-				ł			, 0.0)%
	4	- - -		a f		, f	Ĩ	[0.0)/%(0.0
	2	-					I		S,B): (0.0,
	0								U/O-flow (
		-	0.5	-0.4	-0.3	-0.2	-0.1 E	0 BDT resp	0.1 onse

Figure 5.2. The multi-variate BDT output for the signal $(h \rightarrow ZZ^*)$ and background for the training samples and test samples (points).

 $\sigma \bullet BR(H \rightarrow invisible)$: New Analysis at $\sqrt{s} = 250 \text{ GeV}$

H → *invisible* BR(*invisible*) < 0.9% at 95% CL for 250 fb⁻¹ @ \sqrt{s} = 250 GeV A. Ishikawa (Tohoku Univ) $e^+e^- \rightarrow ZHH$, $v\overline{v}HH$, $HH \rightarrow b\overline{b}WW^*$: New Topology for Higgs Self Coupling at $\sqrt{s} = 500 \& 1000 \text{ GeV}$

 $e^+e^- \rightarrow ZHH$

Combing $HH \rightarrow b\overline{b}b\overline{b} \& b\overline{b}W W^*$

$$\Delta\sigma$$
 / σ = 42.7% for 500 fb⁻¹ at \sqrt{s} = 500 GeV

M. Kurata, T. Tanbe (Univ Tokyo)

J. Tlan, K. Fujii (KEK)

T. Suehara (Tohoku Univ)

Energy(GeV)	Modes	Z decay	Signal	Background	Significance
500	All hadronic	$Z \rightarrow b\overline{b}$ 4-btag	15.20	87.52	1.50σ
		$Z \rightarrow b\overline{b}$ 3-btag	19.43	3099.49	0.35σ
		$Z \rightarrow c\overline{c}$	11.29	366.13	0.58σ
500	Lepton + jets	$Z \rightarrow b\overline{b}$	1.65	17.62	0.38σ
500		$Z \rightarrow c\overline{c}$	0.88	146.09	0.04σ
500	Dilepton	$Z \rightarrow l\bar{l}$	2.24	8.44	0.69σ
500	Trilepton	$Z \rightarrow l \overline{l}$	1.05	2.60	0.55σ
combined					1.91σ

ILC Measurement Summary

Table 5.1. Expe	cted accuracies for	cross section and cro	oss section times	branching ratio	measurements for the	
125 GeV h boson	assuming you run	3×10^7 s at the basel	ine differential Ιι	iminosity for each	center of mass energy.	For
invisible decays o	of the Higgs, the n	umber quoted is the 9	5% confidence ι	upper limit on the	branching ratio.	

\sqrt{s} and $\mathcal L$	$250{\rm fb}^{-1}$ a	at 250 GeV	$500{ m fb}^{-1}$ at $500{ m GeV}$				$1 \mathrm{ab}^{-1}$ at $1 \mathrm{TeV}$		
$(P_{e^{-}}, P_{e^{+}})$	(-0.8,	+0.3)		(-0.8,	+0.3)		(-0.8, +0.2)		
	Zh	$\nu \bar{\nu} h$	Zh	$\nu \bar{\nu} h$	$t\bar{t}h$	Zhh	$\nu \bar{\nu} h$	$t\bar{t}h$	$ u \overline{ u} hh$
$\Delta \sigma / \sigma$	2.6%	-	3.0	-		42.7%			26.3%
BR(invis.)	< 0.9 %	-	-	-	-				
mode				$\Delta(\sigma \cdot B)$	$R)/(\sigma \cdot d)$	BR)			
$h \rightarrow b\overline{b}$	1.2%	10.5%	1.8%	0.7%	28%		0.5%	6.0%	
$h \rightarrow c\bar{c}$	8.3%	-	13%	6.2%			3.1%		
h ightarrow gg	7.0%	-	11%	4.1%			2.3%		
$h \to WW^*$	6.4%	-	9.2%	2.4%			1.6%		
$h \rightarrow \tau^+ \tau^-$	4.2%	-	5.4%	9.0%			3.1%		
$h \rightarrow ZZ^*$	19%	-	25%	8.2%			4.1%		
$h \rightarrow \gamma \gamma$	34%	-	34%	23%			8.5%		
$h ightarrow \mu^+ \mu^-$	100%	-	-	-			31%		

Table 5.2. Expected accuracies for cross section and cross section times branching ratio measurements for the 125 GeV h boson assuming you run 3×10^7 s at the sum of the baseline and upgrade differential luminosities for each center of mass energy. For invisible decays of the Higgs, the number quoted is the 95% confidence upper limit on the branching ratio.

\sqrt{s} and \mathcal{L}	$1150 {\rm fb}^{-1}$	16	$500 {\rm fb}^{-1}$	at 500 ($2.5 \mathrm{ab}^{-1}$ at 1 TeV				
$(P_{e^{-}}, P_{e^{+}})$	(-0.8	,+0.3)	(-0.8,+0.3)				(-0.8,+0.2)		
	Zh	$\nu \overline{\nu} h$	Zh	$\nu \bar{\nu} h$	$t\bar{t}h$	Zhh	$ u \overline{ u} h$	$t\bar{t}h$	$ u \overline{ u} hh$
$\Delta \sigma / \sigma$	1.2%	-	1.7	-		23.7%			16.7%
BR(invis.)	< 0.4 %	-	-	-			-		
mode			4	$\Delta(\sigma \cdot BF)$	$R)/(\sigma \cdot R)$	BR)			
$h \rightarrow b\bar{b}$	0.6%	4.9%	1.0%	0.4%	16%		0.3%	3.8%	
$h \rightarrow c\bar{c}$	3.9%	-	7.2%	3.5%			2.0%		
$h \rightarrow gg$	3.3%	-	6.0%	2.3%			1.4%		
$h \rightarrow WW^*$	3.0%	-	5.1%	1.3%			1.0%		
$h \rightarrow \tau^+ \tau^-$	2.0%	-	3.0%	5.0%			2.0%		
$h \rightarrow ZZ^*$	8.8%	-	14%	4.6%			2.6%		
$h ightarrow \gamma \gamma$	16%	-	19%	13%			5.4%		
$h ightarrow \mu^+ \mu^-$	46.6%	-	-	-			20%		

Model Independent Fit of Cross Sections and BR's

Table 6.3. Summary of expected accuracies for the three cross sections and eight branching ratios obtained from an eleven parameter global fit of all available data.

	ILC(250)	ILC500	ILC(1000)	ILC(LumUp)
process			$\Delta \sigma / \sigma$	
$e^+e^- \rightarrow ZH$	2.6 %	2.0 %	2.0 %	1.0 %
$e^+e^- \rightarrow \nu \bar{\nu} H$	11 %	2.3 %	2.2 %	1.1 %
$e^+e^- \to t\bar{t}H$	-	28 %	6.3 %	3.8 %
mode		4	$\Delta Br/Br$	
$H \rightarrow ZZ$	19 %	7.5 %	4.2 %	2.4 %
$H \to WW$	6.9 %	3.1 %	2.5 %	1.3 %
$H \to b\bar{b}$	2.9 %	2.2 %	2.2 %	1.1 %
$H \to c\bar{c}$	8.7 %	5.1 %	3.4 %	1.9 %
$H \rightarrow gg$	7.5 %	4.0 %	2.9 %	1.6 %
$H \to \tau^+ \tau^-$	4.9 %	3.7 %	3.0 %	1.6 %
$H \to \gamma \gamma$	34 %	17 %	7.9 %	4.7 %
$H \to \mu^+ \mu^-$	100 %	100 %	31 %	20 %

Model Independent Fit of Higgs Couplings

Table 9.1. Summary of expected accuracies $\Delta g_i/g_i$ for model independent determinations of the Higgs boson couplings. The theory errors are $\Delta F_i/F_i = 0.1\%$. For the invisible branching ratio, the numbers quoted are 95% confidence upper limits.

	ILC(250)	ILC(500)	ILC(1000)	ILC(LumUp)
\sqrt{s} (GeV)	250	250 + 500	250 + 500 + 1000	250 + 500 + 1000
L (fb ^{-1})	250	250 + 500	250 + 500 + 1000	1150 + 1600 + 2500
$\gamma\gamma$	18 %	8.4 %	4.0 %	2.4 %
gg	6.4 %	2.3 %	1.6 %	0.9 %
WW	4.8 %	1.1 %	1.1 %	0.6 %
ZZ	1.3 %	1.0 %	1.0 %	0.5 %
$t\overline{t}$	_	14 %	3.1 %	1.9 %
$b\overline{b}$	5.3 %	1.6 %	1.3 %	0.7 %
$\tau^+\tau^-$	5.7 %	2.3 %	1.6 %	0.9 %
$c\bar{c}$	6.8 %	2.8 %	1.8 %	1.0 %
$\mu^+\mu^-$	91%	91%	16 %	10 %
$\Gamma_T(h)$	12 %	4.9 %	4.5 %	2.3 %
hhh	_	83 %	21 %	13 %
BR(invis.)	< 0.9 ~%	< 0.9 %	< 0.9 %	< 0.4 %

ILC vs LHC: General Considerations

- All beam crossings are triggered at the ILC
- All background is electroweak.
- Roughly, the detection efficiency is independent of decay mode $\Rightarrow \Delta(\sigma \cdot BR) / \sigma \cdot BR \propto 1 / \sqrt{BR}$
- LHC Higgs detection efficiency is uneven across decay modes.
- Higgs was discovered in decays modes with γ, e, μ, which have relatively small BR's
- Qualitatively, there is complementarity between the ILC and LHC with respect to decay modes.

7 Parameter HXSWG Benchmark *

_

			ILC(1000)	ILC(LumUp)	
	LHC	<u> </u>	250+500+1000	250+500+1000	\sqrt{s} (GeV)
Mode	$300 {\rm ~fb^{-1}}$	$3000 {\rm ~fb^{-1}}$	250+500+1000	1150 + 1600 + 2500	$L (fb^{-1})$
$\gamma\gamma$	(5-7)%	(2-5)%	3.8 %	2.3 %	
gg	(6-8)%	(3-5)%	1.1 %	0.7 %	
WW	(4-5)%	(2-3)%	0.3 %	0.2 %	
ZZ	(4-5)%	(2-3)%	0.5 %	0.3 %	
$t\bar{t}$	(14 - 15)%	(7-10)%	1.3 %	0.9 %	
$b\overline{b}$	(10 - 13)%	(4-7)%	0.6 %	0.4 %	
$\tau^+\tau^-$	(6-8)%	(2-5)%	1.3 %	0.7 %	

* Assume
$$\kappa_c = \kappa_t$$
 & $\Gamma_{tot} = \sum_{\text{SM decays i}} \Gamma_i^{SM} \kappa_i^2$

Other Higgs Couplings

		ILC(1000)	ILC(LumUp)	
	LHC	250+500+1000	250 + 500 + 100	0 \sqrt{s} (GeV)
300 fb^{-1}	$3000 {\rm ~fb^{-1}}$	250+500+1000	1150 + 1600 + 25	00 L (fb ^{-1})
	-	1.8 %	1.0 %	
30%	10%	16 %	10 %	
-	-	4.5 %	2.3 %*	
-	50%	21 %	13 % *	
< (17 – 28)%	< (6-17)%	< 0.9 %	< 0.4 %	
	300 fb ⁻¹ - 30% - - <(17-28)%	LHC 300 fb^{-1} 3000 fb^{-1} - $-30%$ $10% - 50%<(17-28)%$ $<(6-17)%$	LHCILC(1000) 300 fb^{-1} 3000 fb^{-1} $250+500+1000$ $ 1.8 \%$ 30% 10% 16% $ 4.5 \%$ $ 50\%$ 21% $<(17-28)\%$ $<(6-17)\%$ $<0.9 \%$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

- * Does not include results from searches for non-SM decays, including invisible decays. The error on the total width will improve significantly once these results are incorporated into the fit.
- * Current full simulation result using $H \rightarrow b\overline{b}$, WW * only. Results will improve as more Higgs decay modes are added, and as jet combinatoric problems are solved.

Alternate Luminosity Scenario

Nickname	Ecm(1)	Lumi(1)	+	Ecm(2)	Lumi(2)	Runtime	Wallplug E
	(GeV)	(fb^{-1})		(GeV)	(fb^{-1})	(yr)	(MW-yr)
ILC(250)	250	250				1.1	130
ILC(500)	250	250		500	500	2.0	270
ILC500(LumUp)	250	1150		500	1600	3.9	660

7 Parameter HXSWG Benchmark *

	ILC500(LumUp)	ILC(LumUp)
\sqrt{s} (GeV)	250+500	250 + 500 + 1000
$L (fb^{-1})$	1150 + 1600	1150 + 1600 + 2500
$\gamma\gamma$	4.4 %	2.3 %
gg	1.1 %	0.7 %
WW	0.3 %	0.2 %
ZZ	0.3 %	0.3 %
$t\bar{t}$	1.4 %	0.9 %
$b\overline{b}$	0.6 %	0.4 %
$\tau^+\tau^-$	1.0 %	0.7 %

* Assume $\kappa_c = \kappa_t$ & $\Gamma_{tot} = \sum_{\text{SM decays i}} \Gamma_i^{SM} \kappa_i^2$

Alternate Luminosity Scenario

Nickname	Ecm(1)	Lumi(1)	+	Ecm(2)	Lumi(2)	Runtime	Wallplug E
	(GeV)	(fb^{-1})		(GeV)	(fb^{-1})	(yr)	(MW-yr)
ILC(250)	250	250				1.1	130
ILC(500)	250	250		500	500	2.0	270
ILC500(LumUp)	250	1150		500	1600	3.9	660

Other Higgs Couplings

	ILC500(LumUp)	ILC(LumUp)
\sqrt{s} (GeV)	250+500	250+500+1000
L (fb ⁻¹)	1150 + 1600	1150 + 1600 + 2500
$c\bar{c}$	1.5 %	1.0 %
$\mu^+\mu^-$	42 %	10 %
$\Gamma_T(h)$	2.5 %	2.3 %
hhh	46 %	13 %
BR(invis.)	< 0.4 %	< 0.4 %

Combining LHC Results with Results from Various Future e^+e^- Colliders (from D. Zerwas and the SFITTER Group)

Range corresponds to 2 different sys error assumptions for HL-LHC

	LHC	LHC	HL-LHC	HL-LHC	HL-LHC	HL-LHC
coupling	+ILC	+ILC Lumi-up	+ILC Lumi-up	+CLIC	+ILC Lumi-up	+TLEP
					+CLIC	+CLIC
Γ_H	2.0 - 2.0%	1.1 - 1.1%	1.1 - 1.1%	4.4 - 7.3%	0.9 - 1.0%	1.1 - 1.2%
BR _{inv}	0.8 - 0.8%	0.4 - 0.4%	0.4 - 0.4%	2.2 - 3.9%	0.4 - 0.4%	0.5 - 0.5%
κ_γ	2.4 - 2.7%	2.0 - 2.2%	1.3 - 2.0%	1.8 - 3.4%	1.2 - 2.0%	1.2 - 1.6%
κ_g	1.3 - 1.3%	0.8 - 0.8%	0.8 - 0.8%	1.3 - 2.0%	0.6 - 0.6%	0.6 - 0.6%
κ_W	0.5 - 0.5%	0.3 - 0.3%	0.3 - 0.3%	1.1 - 1.9%	0.3 - 0.3%	0.3 - 0.3%
κ_Z	0.6 - 0.6%	0.3 - 0.3%	0.3 - 0.3%	1.1 - 1.9%	0.3 - 0.3%	0.3 - 0.3%
κ_{μ}	13.8 - 14.2%	9.9 - 9.9%	7.0 - 7.8%	5.2 - 6.0%	4.6 - 4.7%	4.0 - 4.1%
$\kappa_{ au}$	1.5 - 1.6%	0.9 - 0.9%	0.7 - 0.9%	1.3 - 2.3%	0.7 - 0.8%	0.5 - 0.6%
κ_c	1.6 - 1.6%	0.9 - 0.9%	0.9 - 0.9%	1.4 - 2.1%	0.7 - 0.7%	0.7 - 0.7%
κ_b	0.8 - 0.8%	0.5 - 0.5%	0.5 - 0.5%	1.1 - 1.9%	0.3 - 0.3%	0.4 - 0.4%
κ_t	2.8 - 2.9%	1.9 - 1.9%	1.7 - 1.8%	3.5 - 4.5%	1.7 - 1.8%	3.2 - 3.8%
Δ_{γ}	2.5 - 2.8%	2.0 - 2.2%	1.5 - 2.1%	2.8 - 4.6%	1.4 - 2.0%	1.7 - 2.0%
Δ_g	3.8 - 3.8%	2.5 - 2.5%	2.3 - 2.4%	4.1 - 4.8%	2.1 - 2.3%	4.0 - 4.7%

What do these precision values mean?

For Higgs couplings, better precision means greater discovery potential.

Typical coupling variations for several BSM Higgs models:

	κ_V	κ_b	κ_{γ}
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim -3\%$

Plots from Theory Section of ILC Higgs White Paper

Plots from Theory Section of ILC Higgs White Paper

Models with Universal Yukawa and Gauge Couplings

Other Studies Included in ILC Higgs White Paper

- Higgs CP using $e^+e^- \rightarrow t\bar{t}h$
- Lorentz Structure of hW W coupling
- Higgs physics with an ILC $\gamma\gamma$ collider