UK Activities on CMOS MAPS

Fergus Wilson

Particle Physics Department, Rutherford Appleton Laboratory/STFC

SiD Workshop SLAC 14th-16th Oct 2013

15-Oct-2013

Science & Technology Facilities Council Rutherford Appleton Laboratory Production MAPS sensors

Prototype MAPS sensors

- CALICE-UK (ILC calorimetry): Birmingham, Cambridge, Manchester, RAL/STFC, Imperial College (IC), University College, Royal Holloway.
- SPiDer (vertexing/tracking at LC): Bristol, Birmingham, IC, Oxford, Queen Mary, RAL/STFC.
- Arachnid (generic vertexing/tracking/calorimetry): Bristol, Birmingham, Queen Mary, RAL/STFC, Daresbury/STFC.
- Low-Mass and Plume (low-mass structures): RAL/STFC, Bristol, Oxford with DESY, IPHC/Strasbourg, IK-Frankfurt.
- UK MAPS (LC sensor testing): Bristol, Queen Mary, RAL/STFC. Awaiting outcome of grant request.

Monolithic Active Pixel Sensors (MAPS)

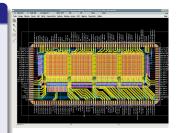
Useful Features

- Low Cost: 0.18 μm CMOS, mature industrial process.
- Low Power: low voltage and absence of standing currents.
- Low Material: very thin overall (30-50 μm).
- Radiation Tolerant: Achilles sensor is tolerant to 20 Mrad.
- High Granularity: pixel sizes down to ${\sim}1\,\mu{\rm m}.$

Additional Features developed

- Deep p-well/InMAPS: improved charge collection.
- High resistivity epitaxial layers: radiation hardness, improved charge collection.
- 4T structures: in-pixel structures, correlated double sampling (CDS), improved S/N, low power (effectively 10μ W/row).
- \bullet Stitching: large structures (13.9 ${\rm cm} \times 12 \, {\rm cm}$ have been achieved).

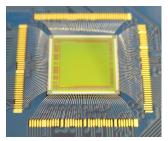
HMRM and Sophia

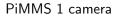

Highly Miniaturised Radiation Monitor

- Sensor size : $50 \times 50 \ \mu m$, $250 \ \mu m$ thick, $10.3 \ mm$ by $2.4 \ mm$.
- Low noise, rad tolerant, designed for ESA.
- To be launched on Tech Demo Satellite.

Single Photon Avalanche Detectors

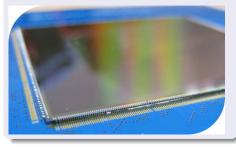
- 0.18 μm CMOS, alternative to APDs and CCDs.
- Targetting FLIM, 3D imaging, astronomy, PET and mass spectroscopy.
- Photon Detection Probability up to 27%
- Timing resolution: $0.5 \,\mathrm{ns}$ FWHM.



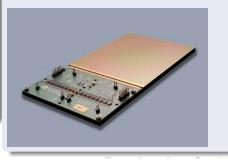

15-Oct-2013 5 / 15

PImMS 1 & 2 - Pixel Imaging Mass Spectroscopy

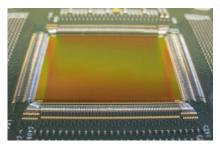
- Based on TPAC.
- Event-based time-stamping pixel sensor.
- 382 \times 382 70 μm pixels.
- 80MHz, $12.5\,\mathrm{ns}$ time resolution.
- 12 bit timestamp storage.
- 4 registers per pixel for multiple event detection.
- Per pixel trim, mask and comparator.
- Analogue readout for focusing and event size measurement.
- Gadolinium thin film coating used in neutron imaging.



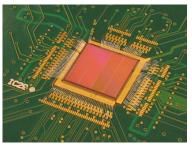
Achilles for TEM and Lassena for X-ray imaging

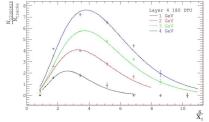

Transmission Electron Microscope

- 4096 x 4096 14 μm pixels
- Sensor Size: 61 mm x 63 mm
- Analogue output, 40 fps.
- Radiation Hard to 20 Mrad.


X-ray Imaging

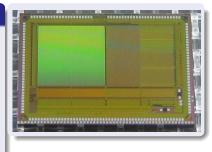
- 2800 x 2400 50 μm pixels.
- 139.2 mm × 120 mm.
- Analogue output, 30 fps.
- 3-side buttable with minimal dead space.


Kirana - Ultra High Speed Imaging Sensor

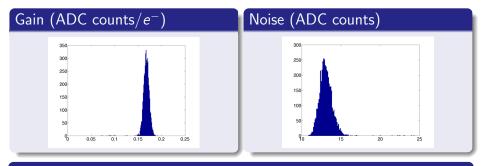

- 924 imes 768, 30 $\mu {
 m m}$ pixels.
- Die size: $32.5 \times 25.5 \,\mathrm{mm}$.
- CDS, in-pixel storage.
- Continuous readout at 1,180 fps.
- Burst mode: 180 frames at 2 MHz (but sensor will work at 5 MHz).
- Gain: $80\mu V/e^-$.
- Full well: 11,700e⁻.
- Commercialised (Specialised Imaging).

Tera-Pixel Active Calorimeter Sensor (TPAC)

- 168×168 50 $\mu \mathrm{m}$ pixels, $1 \times 1 \mathrm{cm}^2$.
- 0.18 μm process, deep p-well, 3T structures only.
- 4 test structures designed + 5 or $12 \,\mu\mathrm{m}$ epitaxial layer.
- Per pixel trim (4 bits), mask (1-bit) and comparator.
- Only hits above threshold stored (zero-suppression).
- 400 ns timestamp with readout every 8192 timestamps (bunch train).


Cherwell 1 - Calorimetry/Tracking/Vertexing

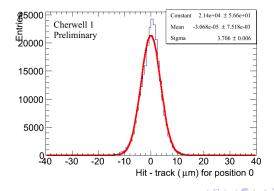
4 test structures on 3 different epitaxial layers


- **OECAL 25**: 48×96 25 μm pixels with 2 \times 2 summing.
- **2 DECAL 50**: 24×48 50 μm pixels.
- **③** Reference: $48 \times 96\ 25\,\mu\mathrm{m}$ pixels with ADC at column base.
- **§** Strixel: $48 \times 96\ 25\,\mu\mathrm{m}$ pixels with ADC embedded in pixel.

Additional features (in most variants)

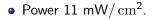
- $0.5 \times 0.5 \, \mathrm{cm^2}$, digital readout.
- 0.18 μm process, 4T structures, CDS.
- 12-bit ADC, rolling shutter, stores 10 time slices.
- Global shutter for DECAL.
- Supports power pulsing.

Cherwell 1 - Recent characterization work

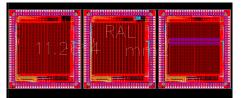

Preliminary results (May 2013)

- Noise 8-12 e⁻ rms depending on epitaxial layer.
- Gain 0.17 ADCs/ e^- or $51\mu V/e^-$.
- ▶ Full well 14700 e[−].
- Gain Stability $< 0.1\%/^{o}$ C between -50 to 50 o C.
- Signal-to-Noise > 130.

Fergus Wilson (RAL/STFC)


Hit Efficiency and Resolution from CERN test beam

- SVD fit to clusters along a road without sensor under consideration.
- No corrections for non-linear charge sharing ($< 1.5 \,\mu m$); multiple scattering ($< 0.5 \,\mu m$); and tracking resolution ($\sim 1 2 \,\mu m$).
- Hit efficiency \geq 99.7%.
- Hit resolution $3.7 \,\mu \text{m}$ without corrections achieved.



Cherwell 2 - ALICE Inner Tracker System prototype

- Based on Cherwell 1 experience.
- 3 variants, (2 x all digital, 1 x analogue FE).
- In-pixel circuitry, 128×128 pixels.
- Gain $38\mu V/e^-$, full well 18,000 e^- , dynamic range 2,900.

- Rolling Shutter, Frame rate 21.76 μs.
- Readout speed $\gtrsim 500$ Mbit/sec.
- About to be characterized before going to test beam.
- Will test at DESY in November.

UK CMOS MAPS Activities

Cherwell 1 - Linear Collider

- Initial results have met or exceeded the original design goal.
- Hit efficiency (\geq 99.7%) and resolution (3.7 μ m) looking good for future vertex and tracking devices.

Cherwell 2 - ALICE

- Sensor currently on test bench and being integrated into r/o system.
- Aim to characterize (PTC scans) in next few weeks.
- Test beam at DESY planned for mid-November. ALICE technology choice in 2014.
- Cherwell 3 : New features and upgrades being designed for production and testing in 2014.

- Cherwell 1: Publish first results (2013/14).
- DECAL and Strixel: These blocks of the Cherwell 1 sensor will be re-characterized; hope to go to DESY next year and re-test (Jan 2014).
- UK-MAPS: If get money, will characterise Lassena sensor for LC (2014-2015).
- ALICE ITS: Hope our MAPS design will be chosen (2014-2018).
- HV-CMOS: ATLAS are intested in HV-CMOS for tracking in LHC Phase II (2014-2023).
- Looking at getting involved in LC perhaps simulation of pixel tracker.