

### Outline

- 1) Experimental conditions and detector requirements
- 2) Vertex detector: Thin sensor assemblies; Readout chip: CLICpix; Power-pulsing; Cooling; Geometry
- 3) ECAL: Cost effectiveness study; Scintillator tile lab tests; Scintillator saturation
- 4) HCAL: DHCAL testbeam analysis
- 5) ILCDIRAC
- 6) Physics benchmarking analyses
- 7) CLICdp collaboration news



## Impact of background on detector design

• Time stamping hits and imposing time and momentum cuts reduces  $\gamma\gamma \rightarrow$  had backgrounds. Timing precision requirement



• Inner radius of vertex barrel and disc positions determined by incoherent pair background.

Geometric requirement

Background considerations influence layout choices of vertex detector





### Vertex detector

















### Thin sensor assemblies

- Ultimate goal: 50 μm thick sensors + 50 μm thick ASICs, 25 μm pixel pitch
- Thin sensor + "normal" Timepix assemblies
  - Feasibility tests of ultra-thin sensors
  - Assemblies with 50, 100, 200 μm sensor

#### Advacam

- 50 μm thin with 20 μm and 50 μm active-edge assemblies on standard thickness Timepix ASIC (delivered July 2013)
- 5 x assemblies tested at DESY

#### Micron Semiconductor + IZM

- 100, 150, 200 μm pixel sensor (Timepix compatible)
- 3 x 100 μm assemblies tested at DESY







### DESY testbeam results

#### **Energy Spectrum**





Sensor pixel







Cluster Size 4



Size 4 (2x2)

### DESY testbeam results

- Minimisation of tracking resolution by proper arrangement of telescope
- Charge weighting: common to improve resolution to sub pixel size
- Eta correction: using TOT information to correct for non-linearities in charge sharing
- Our 50 µm sensors only charge share 20% of the time. Need smaller pixel size to benefit more



#### Charge weighted and eta corrected





## Readout chip: CLICpix

- CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector
- A demonstrator of the CLICpix architecture with an array of 64 x 64 pixels has been produced using 65 nm technology and tested
- Main features: 25 µm pixel pitch, simultaneous TOA and TOT measurements, power pulsing, data compression



## CLICpix prototype characterisation



- Time Over Threshold gain distribution
- Uniform gain across the whole matrix
- Gain variation is 4.2% r.m.s. (for nominal feedback current)



2000

- Matrix equilisation
  - Calibrated spread is 0.89 mV (about 22 e<sup>-</sup>) across the whole matrix
    - (Expect a signal of  $\sim$ thousands of electrons in 50  $\mu$ m sensor)

## Power pulsing

- Goal: to power pulse the CLICpix ASIC (analogue and digital electronics)
- Total power dissipation required to be <50 mW/cm<sup>2</sup> in the sensor area



- Aluminium flex cables and silicon capacitors reduce material budget
- Current material budget 0.1% X<sub>0</sub> per layer. Projected budget: < 0.05% X<sub>0</sub>



## Power pulsing

- Analog electronics can be turned OFF (power pulsing) to reduce the average power consumption (2 mW/cm² instead of 2 W/cm² if it was ON all the time)
- One digital chip is readout every 20/12 ms. The time the chip needs to be read out depends on the occupancy, which maximum is 3% (300  $\mu$ s). Avg power consumption = 13 mW/cm<sup>2</sup>



## Power pulsing - lab tests



Controlled current source

#### Analogue

- Voltage drop < 20 mV</li>
- Measured average power consumption < 10 mW/cm²</li>

#### Digital

- Voltage drop < 70 mV</li>
- Measured average power consumption < 35 mW/cm²</li>



## Cooling

- Total heat load after power pulsing ~470 W
- Want room temperature operation and low material budget
- Dry gas cooling (Nitrogen)





## Cooling simulations





- Mass flow: 19.9 g/s
- Avg. velocity in barrel: 6.3 m/s
- Silicon temperature below 40°C
- Conduction not taken into account



## Cooling test bench

- Evaluate forced convection air cooling
  - Validate the dedicated finite element simulations
- Measure & characterise air-flow induced vibrations
  - Develop and characterise low-mass ladder support ( $\sim 0.05\% X_0$ )





Ladder support structure prototypes

## Geometry and physics impact

Use flavour-tagging performance as benchmark for detector layout optimisation

Single sided spiral (5 barrel + 4 endcap)





Double sided spiral (3x2 barrel + 3x2 endcap)



Full GEANT4 detector simulation,





Double sided better than Single sided

Single sided better than Double sided

Very similar performance for both geometries

### **ECAL**













## ECAL cost-effectiveness study

- The ECAL is one of the most costly sub-detectors in both detector concepts
  - ▶ 35% of the total in CLIC\_ILD
  - 25% of the total in CLIC\_SiD
- To better understand the requirements of the ECAL, many models and parameters are under investigation in simulation studies, for example:
  - Transverse granularity
  - Regions of different transverse granularity
  - Si/Sc hybrid models
  - Number of ECAL layers





## ECAL simulation study

ScW ECAL models with two transverse segmentations.

- First region comprises 5x5 mm<sup>2</sup> cells. Study:
  - The size of square Sc cells used in second region
  - The layer at which the Sc cell size changes
- Sc thickness is 2.0 mm, W absorber thickness is 4.2 mm

Benefit of using Si (0.5 mm thick) in the first 10 layers:





## Scintillating tile lab at CERN

- New scintillator lab to build expertise
- Preliminary setup for tile scans to study geometry, packaging SiPM coupling
- Electron gun with ~350 MBq Sr90 source



Inside AC regulated dark room



Tile packaging



3M reflective foil, 70 µm thick



White reflective paint, 2 coats

Translation axes

DUT

Electron gun

## Scintillating tile lab results

- First tests study light yield of MIPs as a function of position and packaging in 20x20x2 mm tiles
- Foil packaging gives higher light yield, and better uniformity

Wrapped in 3M reflective foil 70 µm thick



cut @ 30 p.e. (~0.3 MIP)

# p.e. for all measurement points

cut @ I0 p.e. (~0.5 MIP)

Uniformity of light yield 0.05 X-position [mm]

Painted in white reflective paint



### **HCAL**

CLIC HCAL will use tungsten as absorber

| Material | $X_0$ [cm] | $\lambda_{ m I}$ [cm] |
|----------|------------|-----------------------|
| Steel    | 1.73       | 16.9                  |
| Tungsten | 0.37       | 10.2                  |

- Long term testbeam campaign to better understand the requirements of the HCAL and to validate GEANT4 simulation
  - AHCAL 2010-2011
  - DHCAL 2012
- CERN PS and SPS testbeam:
  - I-I0 GeV and I0-300 GeV beams
  - 30 million events recorded in 2012





DHCAL testbeam at CERN

## DHCAL testbeam analysis

- Data recorded at CERN in 2012 now being analysed
  - Cleaned (I/1000 cells removed)
  - Layer to layer calibration done with muons
- Now tuning simulation and digitisation model to match muon and electron data
- Lead to predictions for pions e.g. longitudinal shower





### **ILCDIRAC**

#### Current status: All jobs

Stable release

- Over 100 users
- Production and user jobs
- File catalogue knows all files used for SiD DBD
- See talk by Christian Grefe, Tuesday 14h00



## Physics benchmark studies

Recent studies focused on Higgs analyses
 See talk by Sophie Redford, Monday 14h00

Nobel Prize in Physics for the Higgs mechanism 8.10.13





H $\rightarrow \gamma \gamma$  signal in 1.5 ab<sup>-1</sup> at 1.4 TeV BDT selection gives result  $\sigma = 6.8$ 





Missing pT in ttH semi-leptonic channel Combined analysis:  $\delta g_{ttH} = 4.3\%$ 





## CLICdp collaboration



#### 19 institutes have signed the Memorandum on Cooperation (MoC):

Australia: ACAS; Belarus: NC PHEP Minsk; Chile: The Pontificia Universidad Católica de Chile, Santiago; Czech Republic: Academy of Sciences Prague; Denmark: Aarhus Univ.; France: LAPP Annecy; Germany: MPI Munich; Israel: Tel Aviv Univ.; Norway: Bergen Univ.; Poland: Cracow AGH + Cracow Niewodniczanski Inst.; Romania: Inst. of Space Science; Serbia: Vinca Inst. Belgrade; Spain: Spanish LC network; UK: Cambridge Univ. + Oxford Univ. + Birmingham Univ.; USA: Argonne lab; CERN

## CLICdp structure

- Institute board: formed by the 19 member institutes
- Frank Simon: elected as chairperson of CLICdp Institute Board

- Executive team:
- Lucie Linssen: elected as spokesperson for CLICdp
- Mark Thomson: elected as member of the executive team

- Publication and Speakers committee:
- Aharon Levy: elected as chairperson of the Publication Committee
- Erik van der Kraaij: elected as chairperson of the Speakers Committee

## Summary



CLIC\_SiD detector mock up as seen on the CERN Open Days

- Research progressing on many fronts
- Vertex detector: integrated approach
  - Thin sensors
  - CLICpix
  - Power pulsing
  - Cooling
- **ECAL**: simulation and lab tests
  - Cost-effective layer strategy
  - Scintillator tile lab tests
- HCAL: testbeam analysis
- CLICdp collaboration growing

# Backup slides

## Experimental conditions - beam structure



- Bunch train every 20 ms (50 Hz)
- Train of 312 bunches (156 ns)
  - Small duty cycle
  - Possibility of power pulsing
- Within a train, bunch crossing every 0.5 ns
  - Detector integrates over several crossings
  - Background rejection requires precise (10 ns) time stamping of hits

## Experimental conditions - beam collisions

- High bunch charge density means that electrons and positrons radiate strongly in the em field of the other beam.
- Beamstrahlung photons convert through various processes to e+e- pairs
  - Most at small angle
- Two photon interactions  $\gamma\gamma \rightarrow had$
- Expect 3.2 events per BX:







## Detector requirements for physics

- Track momentum resolution
- Material budget requirement

$$\sigma_{p_{\mathrm{T}}}/p_{\mathrm{T}}^2 \lesssim 2 \cdot 10^{-5} \; \mathrm{GeV}^{-1}$$

- Impact parameter resolution
- Single point resolution requirement

$$\sigma_{d_0}^2 = a^2 + \frac{b^2}{p^2 \sin^3 \theta}$$

$$a \lesssim 5 \ \mu \text{m} \text{ and } b \lesssim 15 \ \mu \text{m GeV}$$

- Jet energy resolution
- Granularity requirement

$$\sigma_E/E \lesssim 5-3.5\%$$





### ECAL scintillator saturation?

Literary review of Dose Rate Saturation.
 Study of different scintillators and their response to different electron doses:

Stevens and Knowlen: Transient Nonlinear Response of Plastic Scintillators (IEEE Transactions on Nuclear Science (Volume: 15, Issue: 3))



Fig. 8. Fluor light output per incident dose rate versus incident dose rate (after 0.5-microsecond exposure).

- Findings: Non-linear response starts at  $10^{10}$  Roentgen per second, or  $3 \times 10^{-2}$  Ampere/cm<sup>2</sup>
- Unit conversions: Ampere is Coulomb per second, so this is  $1.8 \times 10^8$  particles per (cm<sup>2</sup> ns)
- Or, taking the area/mass of the sample, and 0.01 Gray per Roentgen, estimated dose at which saturation starts to be  $2.5 \times 10^5$  GeV/(cm<sup>2</sup> ns)
- Saturation starts about 4 orders of magnitude above the expected energy deposits at CLIC