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• Time stamping hits and imposing time and momentum cuts reduces γγ→ had backgrounds. 
Timing precision requirement

• Inner radius of vertex barrel and disc positions determined by incoherent pair background. 
Geometric requirement

Impact of background on detector design
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Vertex detector

4

Readout

Simulation Testbeam

Powering

Thin sensors Supp.

CoolingDAQGeometry



Thin sensor assemblies
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• Ultimate goal: 50 µm thick sensors + 50 µm thick ASICs, 25 µm pixel pitch

• Thin sensor + “normal” Timepix assemblies 
• Feasibility tests of ultra-thin sensors
• Assemblies with 50, 100, 200 µm sensor

Advacam
• 50 µm thin with 20 µm and 50 µm active-edge assemblies on standard 

standard thickness Timepix ASIC (delivered July 2013)
• 5 x assemblies tested at DESY 

Micron Semiconductor + IZM
• 100, 150, 200 µm pixel sensor (Timepix compatible) 
• 3 x 100 µm assemblies tested at DESY 
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DESY testbeam results
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TOT1
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Energy Spectrum, cluster size = 1

cluster size 1

cluster size 2

cluster size 3

cluster size 4

Advacam  p-in-n 50um thin 
Timepix Assembly, 50um 
edges, ~100nA@15V

Overall Efficiency > 98.4%
Cluster Size 1 → 82%
Cluster Size 2 → 18%

EUDET telescope
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Cluster Size 4 

Cluster Size 2 
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DESY testbeam results
• Minimisation of tracking resolution by 

proper arrangement of telescope

• Charge weighting: common to improve 
resolution to sub pixel size

• Eta correction: using TOT information 
to correct for non-linearities in charge 
sharing

• Our 50 µm sensors only charge share 
20% of the time. Need smaller pixel size 
to benefit more 0%1� 1�6
7
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Readout chip: CLICpix
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• CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector

• A demonstrator of the CLICpix architecture with an array of 64 x 64 pixels has been 
produced using 65 nm technology and tested 

• Main features: 25 µm pixel pitch, simultaneous TOA and TOT measurements, power 
pulsing, data compression

1.85  mm

3 
m

m

64 x 64 25 µm pixels

Chip BoardFPGA Board



CLICpix prototype characterisation
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• Time Over Threshold gain distribution 

• Uniform gain across the whole matrix

• Gain variation is 4.2% r.m.s. (for nominal 
feedback current)

• Matrix equilisation

• Calibrated spread is 0.89 mV (about 22 e-) 
across the whole matrix

• (Expect a signal of ~thousands of electrons 
in 50 μm sensor)

Pixels 1-64
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Power pulsing
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The ladder is formed by 24 
readout ASICs (CLICpix)

1 cm

1 cm

24 cm

CLICpix
Power each half a ladder

• Goal: to power pulse the CLICpix ASIC (analogue and digital electronics)

• Total power dissipation required to be <50 mW/cm2 in the sensor area

Ladders

Vertex barrel

Power in Power in

• Aluminium flex cables and silicon capacitors reduce material budget

• Current material budget 0.1% X0 per layer. Projected budget: < 0.05% X0



Power pulsing

11

•  Analog electronics can be turned OFF (power pulsing) to reduce the average power 
consumption (2 mW/cm2 instead of 2 W/cm2 if it was ON all the time) 

• One digital chip is readout every 20/12 ms. The time the chip needs to be read out depends 
on the occupancy, which maximum is 3% (300 µs).  Avg power consumption = 13 mW/cm2 

20µs
ON OFF ON

20µs
Analog Chip [1:12]

Train Bunch

ON

ON 2 W/cm2 ON 100 mW/cm2OFF Turned OFF

ON

ON

Idle Read Out Idle ON

Idle 8 mW/cm2

ONIdle Read Out Idle

20/13 ms

Read Out 360 mW/cm2

20/13 ms

Digital Chip [1]

Digital Chip [2]

Digital Chip [12] ONRead Out Idle

20/13 ms

Idle



Power pulsing - lab tests
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Back-end cables

Al Flex Cable

Dummy load
Controlled current source

Analogue

• Voltage drop < 20 mV

• Measured average power 
consumption < 10 mW/cm2

Digital

• Voltage drop < 70 mV

• Measured average power 
consumption < 35 mW/cm2

Iload for 1 ASIC 

Vload

VCap

Particular case ton  = 20μs

2 A per chip
5.3 V

1.2 V ∆V = 16 mV

1.4 VAnalogue results



Cooling
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• Total heat load after power pulsing ~470 W

• Want room temperature operation and low 
material budget

• Dry gas cooling (Nitrogen)



Cooling simulations
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• Mass flow: 19.9 g/s

• Avg. velocity in barrel: 6.3 m/s

• Silicon temperature below 40oC 

• Conduction not taken into account

Velocity

Temperature

Temperature



Cooling test bench
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• Evaluate forced convection air cooling

‣ Validate the dedicated finite element simulations 

• Measure & characterise air‐flow induced vibrations 

‣ Develop and characterise low‐mass ladder support (~0.05% X0)

Ladder support structure prototypes

Adjustable height 
channel

Adjustable angle ladder 
support

Outlet

Inlet

Thermal test bench



Geometry and physics impact
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Double sided spiral
(3x2 barrel + 3x2 endcap)

Single sided spiral
(5 barrel + 4 endcap) 

Very similar 

performance

for both 

geometries

Beauty eff.

Full GEANT4 detector simulation, 
LCFIPlus flavor tagging:

Use flavour-tagging performance as benchmark for detector layout optimisation

Double sided 
better than
Single sided

Single sided 
better than 

Double sided

Beauty eff.
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ECAL
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Tile scans

Simulation

Lab tests

Lab development

Cost effectiveness

Tile packaging



ECAL cost-effectiveness study
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• The ECAL is one of the most costly sub-detectors in both detector concepts

‣ 35% of the total in CLIC_ILD

‣ 25% of the total in CLIC_SiD

• To better understand the requirements of the ECAL, many models and parameters are 
under investigation in simulation studies, for example:

‣ Transverse granularity

‣ Regions of different transverse granularity

‣ Si/Sc hybrid models

‣ Number of ECAL layers



looks promising

ECAL simulation study
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ScW ECAL models with two transverse segmentations.  

• First region comprises 5x5 mm2 cells. Study:

• The size of square Sc cells used in second region

• The layer at which the Sc cell size changes

• Sc thickness is 2.0 mm, W absorber thickness is 4.2 mm 

Benefit of using Si (0.5 mm thick) in the first 10 layers:



Scintillating tile lab at CERN
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Electron gun

Translation 
axes

DUT

Inside AC regulated dark room

• New scintillator lab to build expertise

• Preliminary setup for tile scans to study 
geometry, packaging SiPM coupling

• Electron gun with ~350 MBq Sr90 source

Tile packaging

3M reflective 
foil, 70 μm thick

White reflective 
paint, 2 coats



Scintillating tile lab results
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• First tests study light yield of MIPs as a function of position and packaging in 20x20x2 mm tiles

• Foil packaging gives higher light yield, and better uniformity

Painted in white 
reflective paint

Wrapped in 3M reflective 
foil 70 μm thick

cut @ 10 p.e. (~0.5 MIP)

cut @ 30 p.e. (~0.3 MIP)

Uniformity of light yield



HCAL

• CLIC HCAL will use tungsten as absorber

• Long term testbeam campaign to better 
understand the requirements of the HCAL 
and to validate GEANT4 simulation

• AHCAL 2010-2011

• DHCAL 2012

• CERN PS and SPS testbeam:

• 1-10 GeV and 10-300 GeV beams

• 30 million events recorded in 2012

22
DHCAL testbeam at CERN



DHCAL testbeam analysis

• Data recorded at CERN in 2012 now being analysed

• Cleaned (1/1000 cells removed)

• Layer to layer calibration done with muons

• Now tuning simulation and digitisation model to 
match muon and electron data

• Lead to predictions for pions e.g. longitudinal shower

23



ILCDIRAC
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• Stable release

• Over 100 users

• Production and user jobs

• File catalogue knows all 
files used for SiD DBD

• See talk by Christian 
Grefe, Tuesday 14h00
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Physics benchmark studies
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• Recent studies focused on Higgs analyses 
See talk by Sophie Redford, Monday 14h00

Nobel Prize in Physics 
for the Higgs mechanism 

8.10.13

H→γγ signal in 1.5 ab-1 at 1.4 TeV
BDT selection gives result σ = 6.8

e−

e+
ν̄e

νe

γ

Z, γ

Missing pT in ttH semi-leptonic channel
Combined analysis: δgttH = 4.3%
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CLICdp collaboration

19 institutes have signed the Memorandum on  Cooperation (MoC): 

Australia: ACAS; Belarus: NC PHEP Minsk; Chile: The Pontificia Universidad Católica de Chile, Santiago; Czech 
Republic: Academy of Sciences Prague; Denmark: Aarhus Univ.; France: LAPP Annecy; Germany: MPI Munich; 
Israel: Tel Aviv Univ.; Norway: Bergen Univ.; Poland: Cracow AGH + Cracow Niewodniczanski Inst. ; Romania: 
Inst. of Space Science; Serbia: Vinca Inst. Belgrade; Spain: Spanish LC network; UK: Cambridge Univ. + Oxford 
Univ. + Birmingham Univ.; USA:  Argonne lab; CERN
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CLICdp structure

• Institute board: formed by the 19 member institutes 

• Frank Simon: elected as chairperson of CLICdp Institute Board

• Executive team:

• Lucie Linssen: elected as spokesperson for CLICdp

• Mark Thomson: elected as member of the executive team

• Publication and Speakers committee:

• Aharon Levy: elected as chairperson of the Publication Committee

• Erik van der Kraaij: elected as chairperson of the Speakers Committee

27



Summary
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Research progressing on many fronts

Vertex detector: integrated approach

‣ Thin sensors

‣ CLICpix

‣ Power pulsing

‣ Cooling

ECAL: simulation and lab tests

‣ Cost-effective layer strategy

‣ Scintillator tile lab tests

HCAL: testbeam analysis

CLICdp collaboration growing

CLIC_SiD detector mock up as seen 
on the CERN Open Days



Backup slides
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Experimental conditions - beam structure
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• Bunch train every 20 ms (50 Hz)

• Train of 312 bunches (156 ns)

• Small duty cycle

• Possibility of power pulsing 

• Within a train, bunch crossing every 0.5 ns

• Detector integrates over several crossings

• Background rejection requires precise (10 ns) time stamping of hits

156 ns
312 bunches per train
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• High bunch charge density means that 
electrons and positrons radiate strongly 
in the em field of the other beam. 

• Beamstrahlung photons convert through 
various processes to e+e- pairs

• Most at small angle

• Two photon interactions γγ→ had

• Expect 3.2 events per BX:

Experimental conditions - beam collisions



Detector requirements for physics

• Track momentum resolution 

‣ Material budget requirement

• Impact parameter resolution 

‣ Single point resolution requirement 

• Jet energy resolution 

‣ Granularity requirement

32



ECAL scintillator saturation?
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• Literary review of Dose Rate Saturation. 
Study of different scintillators and their 
response to different electron doses:

• Findings: Non-linear response starts at 1010 Roentgen per second, or 3 × 10−2 Ampere/cm2 

• Unit conversions: Ampere is Coulomb per second, so this is 1.8 × 108 particles per (cm2 ns) 

• Or, taking the area/mass of the sample, and 0.01 Gray per Roentgen, estimated dose at which 
saturation starts to be 2.5 × 105 GeV/(cm2 ns) 

• Saturation starts about 4 orders of magnitude above the expected energy deposits at CLIC 

Stevens and Knowlen: Transient Nonlinear 
Response of Plastic Scintillators (IEEE Transactions 

on Nuclear Science (Volume:15, Issue: 3))


