LCD Common Software

Norman Graf, Jeremy McCormick (SLAC) SiD Meeting October 15, 2013

Common LCD Software

- General agreement among LC concept working groups that most efficient way forward is to move to more common software tools
- Already have an unprecendently strong base of collaborative software used by CLIC, ILD and SID:
 - LCIO common EDM and persistency
 - PandoraPFA, LCFIVertex/LCFIPlus
 - Geant4 (slic, Mokka)
- Informal series of Linear Collider Software Meetings held at CERN with software experts from CLIC, ILD and SiD in 2009, 2012 & 2013
 - Continue to identify areas for collaborative development.

LCD Software Meetings

- At 2012 meeting, reached a consensus to work towards:
 - a common simulation application based on the geometry description developed in AIDA WP2
 - a common C++ tracking package in the context of AIDA WP2
- At 2013 meeting discussion focused on the details of how these goals can be achieved
 - interface between geometry description and simulation
 - interface to reconstruction (tracking)
 - decided to develop prototypes to investigate options
 - agreement to use DD4hep as geometry tool

Full Detector Response Simulation

- Use Geant4 toolkit to describe interaction of particles with matter and fields.
- Program framework provides access to:
 - Event Generator particle input
 - Detector Geometry description input
 - Detector Hits output
- slic used primarily by SiD
- Mokka used primarily by ILD
 - support at LLR has been reduced
 - main developers and maintainers moved on to other tasks

Geometry Definition

- Goal is to free the end user from having to write any C++ code or be expert in Geant4 to define the detector.
- All of the detector properties should be definable at runtime with an easy-to-use format.
- Selected xml, and extended the existing GDML format for pure geometry description.

LCDD and GDML

•Adopted GDML as base geometry definition, then extended it to incorporate missing detector elements.

LCDD

- detector info
- identifiers
- sensitive detectors
- regions
- physics limits & cuts
- visualization
- magnetic fields

GDML

- expressions (CLHEP)
- materials
- solids
- volume definitions
- geometry hierarchy

LCDD Structure

<lcdd></lcdd>	LCDD Root Element
<header></header>	Information about the Detector
<iddict></iddict>	Identifier Specifications
<sensitive_detectors></sensitive_detectors>	Detector Readouts
<limits></limits>	Physics Limits
<regions></regions>	Regions (sets of volumes)
<display></display>	Visualization Attributes
<gdml></gdml>	GDML Root Element
<define></define>	Constants, Positions, Rotations
<materials></materials>	Material Definitions
<solids></solids>	Solid Definitions
<structure></structure>	Volume Hierarchy
<fields></fields>	Magnetic Field

Icdd Features

- **Regions**: production cuts
- **Physics limits**: track length, step length, etc.
- Visualization: color, level of detail, wireframe/solid
- Sensitive detectors
 - calorimeter, optical calorimeter, tracker
 - segmentation
- **ID**s
 - volume identifiers (physical volume id)
- Magnetic fields
 - dipole, solenoid, field map
- utilities
 - information on Geant4 stores
 - GDML load/dump

"Compact" Description

- The lcdd file is very descriptive, but therefore also very verbose.
- Can be written by hand, but prone to human error.
 - Also, just specific to the simulation and not easily accessible to reconstruction and visualization.
- Developed a "compact" detector description which encapsulates the basic properties of a detector and which is further processed by code to produce the input specific to different clients.

Compact Detector Description

- A number of generally useful detector types (at least for HEP collider detectors) have been developed, such as:
 - Sampling calorimeters
 - TPCs
 - Silicon trackers (microstrip as well as pixel)
 - Generic geometrical support structures
- Can also incorporate GDML snippets
 - Allows inclusion of more complicated volumes derived for instance from engineering (CAD) drawings.

DD4hep

- AIDA deliverable to provide Detector Description for HEP experiments supporting the full experimental life cycle:
 - Detector concept development & optimization
 - Detector construction and operation
 - Simulation, reconstruction, analysis
 - Support for:
 - Geometry
 - Readout
 - Alignment
 - Calibration

DD4hep and slic

- Instead of reinventing another Geant4 program, will use slic as the simulation program.
- Instead of reinventing a geometry manipulation & navigation program, will use root's TGeo class.
- Will remain decoupled from slic code base by producing lcdd file.
- Virtual segmentation classes (used e.g. for calorimeter readout) will be shared between simulation and C++ reconstruction.

"Virtual Segmentation"

- Unrealistic to include all pixels in LC detectors as physical or logical elements in Geant4
- Unrealistic to store every step of every particle (especially secondaries in calorimeter showers)
- Use "virtual segmentation" to aggregate energy depositions in calorimeters.
 - Fixed number of different types
 - position to cell ID (used in simulation)
 - cell ID to position (used in reconstruction)
 - list of neighboring cell IDs (reconstruction)

Virtual Segmentation

- Working to provide package which provides implementations of basic types of segmentation.
- Want minimal coupling between simulation (Geant4) and reconstruction (root) environments.
- Refactoring of Geomconverter / lcdd packages.
- Ongoing work by Christian Grefe to explore calorimeter reconstruction and Frank Gaede to investigate track reconstruction using new API.

DD4hep Status & Plans

- Have developed simple prototypes:
 - ILD: VXD, SIT, TPC, AHcal
 - Calice test beam
 - CLICSiD
- Being used to study technical issues:
 - cellIDs, detector segmentations
 - sensitive detectors
 - interface to reconstruction
- Working meeting planned for December @ CERN

ILCSoft

- System to build and release software packages
- slic, XercesC, HepPDT, GDML, LCDD are now included
 - SimDist no longer being used
- DD4hep also included
- Number of additional packages added in latest release, e.g.
 - added python bindings to LCIO (C.Grefe)
 - partial reading of LCIO files

Summary

- LCD sim/reco working groups continue to work towards increased software commonality.
- Midterm goal: all concept working groups use SLIC for full detector response simulation via lcdd
- Provide common source of geometry for simulation and (C++/root) reconstruction via DD4hep (Tgeo)