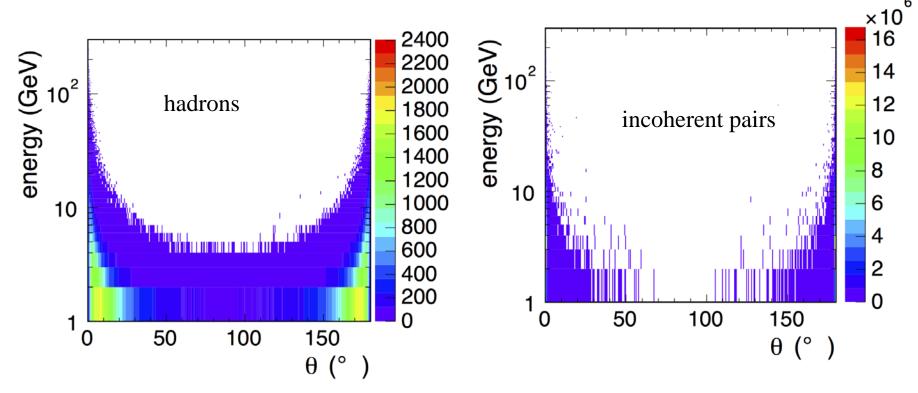
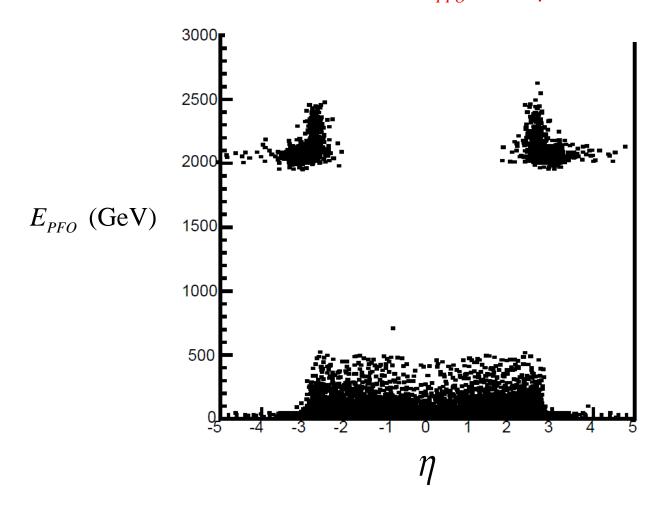
Future SiD Benchmarking Studies


Tim Barklow (SLAC)

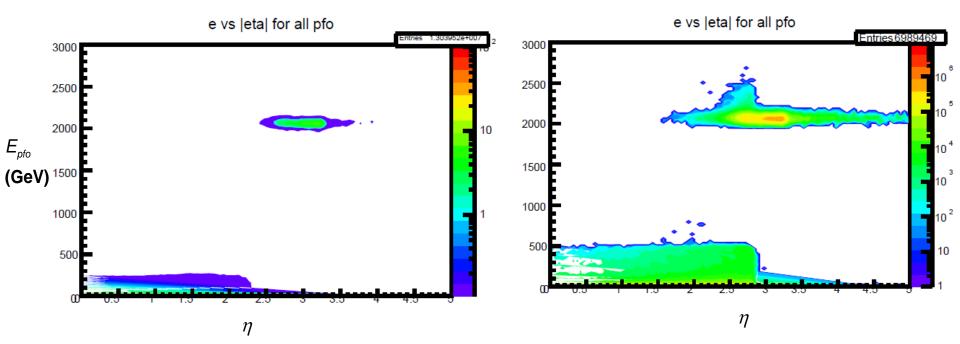
Oct 14, 2013

Possible Future SiD Benchmarking Studies

- Low angle electron tagging of $\gamma\gamma$ processes
- Study the possibility of starting the Higgs physics program at $\sqrt{s} = 350$ GeV instead of $\sqrt{s} = 250$ GeV.
- Expand invisible Higgs decay mode analysis to include general BSM Higgs decays, and include the searches for invisible and BSM decays in total width analysis.
- Improve $h \rightarrow ZZ^*$ analysis.
- Develop beam energy, luminosity and polarization analyses using extraction line instruments and well understood physics processes.
- Detector optimization benchmarks.


Angular distribution of background

Incoherent pairs affect mostly occupancies and tracking efficiencies


Hadrons have enough energy to reach the calorimeter

Two large energy PFO's at large η created each event by incoherent e^+e^- pairs. Remove with cuts on E_{PFO} and η

SiD ffh_mumu $e^+e^- \rightarrow v_e \overline{v}_e h \rightarrow v_e \overline{v}_e \mu^+ \mu^-$

SiD 4f _ sze _ l $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$

Goal of new study is to do a proper analysis of the beamcal data and pull forward electrons out of the several TeV energy deposit. Then perform physics benchmark analyses that benefit from $\gamma\gamma$ vetoing such as $e^+e^- \rightarrow v_e \overline{v}_e h$, $e^+e^- \rightarrow \tilde{\tau}^+\tilde{\tau}^-$, etc.

If you look at the ILC Higgs results following 3 Snowmass years at the baseline luminosity at $\sqrt{s} = 250$ GeV, you don't see a big improvement relative to HL-LHC. It is only after running at $\sqrt{s} = 500$ GeV to get $\sigma \cdot BR(v_e \overline{v}_e h \rightarrow v_e \overline{v}_e b\overline{b})$ that we see a decent gain. Why not start at $\sqrt{s} = 350$ GeV where we can get all of $\sigma(ZH)$, $\sigma \cdot BR(Zh \rightarrow Zxx)$, and $\sigma \cdot BR(v_e \overline{v}_e h \rightarrow v_e \overline{v}_e b\overline{b})$? (And measure tT threshold)

			ILC(250)	ILC(500)	
LHC			250	250+500	\sqrt{s} (GeV)
Mode	$300 {\rm ~fb^{-1}}$	$3000 {\rm ~fb^{-1}}$	250	250 + 500	$L (fb^{-1})$
$\gamma\gamma$	(5-7)%	(2-5)%	17 %	8.3 %	
gg	(6-8)%	(3-5)%	6.1 %	2.0 %	
WW	(4-5)%	(2-3)%	4.7 %	0.4 %	
ZZ	(4-5)%	(2-3)%	0.7 %	0.5 %	
$tar{t}$	(14 - 15)%	(7 - 10)%	6.4 %	2.5 %	
$b\overline{b}$	(10 - 13)%	(4-7)%	4.7 %	1.0 %	
$\tau^+\tau^-$	(6-8)%	(2-5)%	5.2 %	1.9 %	

7 Parameter HXSWG Benchmark

Model independent fit of total Higgs width is based solely on $\sigma \cdot BR$ for SM Higgs decays and does not include limits on direct searches for invisible decays are other non-SM Higgs decays. The total width precision can be improved significantly if the search results are included.

Table 9.1. Summary of expected accuracies $\Delta g_i/g_i$ for model independent determinations of the Higgs boson couplings. The theory errors are $\Delta F_i/F_i = 0.1\%$. For the invisible branching ratio, the numbers quoted are 95% confidence upper limits.

	ILC(250)	ILC(500)	ILC(1000)	ILC(LumUp)
\sqrt{s} (GeV)	250	250 + 500	250 + 500 + 1000	250+500+1000
L (fb ^{-1})	250	250 + 500	250 + 500 + 1000	1150 + 1600 + 2500
$\gamma\gamma$	18 %	8.4 %	4.0 %	2.4 %
gg	6.4 %	2.3 %	1.6 %	0.9 %
WW	4.8 %	1.1 %	1.1 %	0.6 %
ZZ	1.3 %	1.0 %	1.0 %	0.5 %
$t\overline{t}$	-	14 %	3.1 %	1.9 %
$b\overline{b}$	5.3 %	1.6 %	1.3 %	0.7 %
$\tau^+\tau^-$	5.7 %	2.3 %	1.6 %	0.9 %
$c\bar{c}$	6.8 %	2.8 %	1.8 %	1.0 %
$\mu^+\mu^-$	91%	91%	16 %	10 %
$\Gamma_T(h)$	12 %	4.9 %	4.5 %	2.3 %
hhh	_	83 %	21 %	13 %
BR(invis.)	< 0.9 %	< 0.9 %	< 0.9 %	< 0.4 %