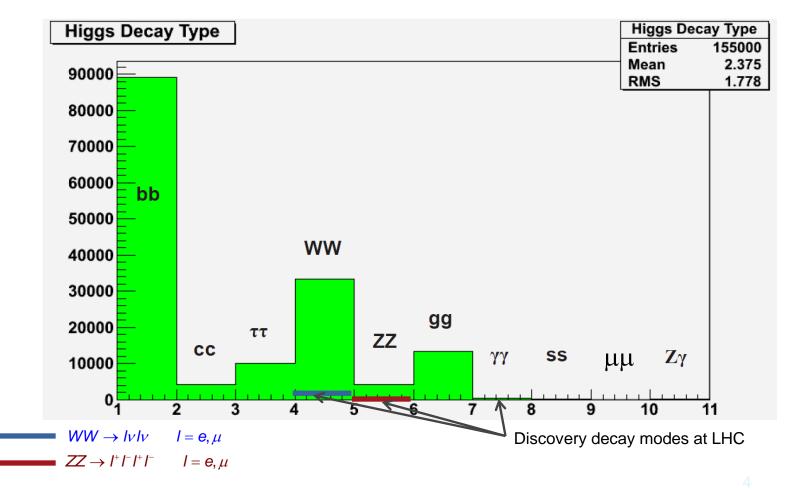

Higgs Coupling Fits

Tim Barklow (SLAC)

Sep 23, 2013

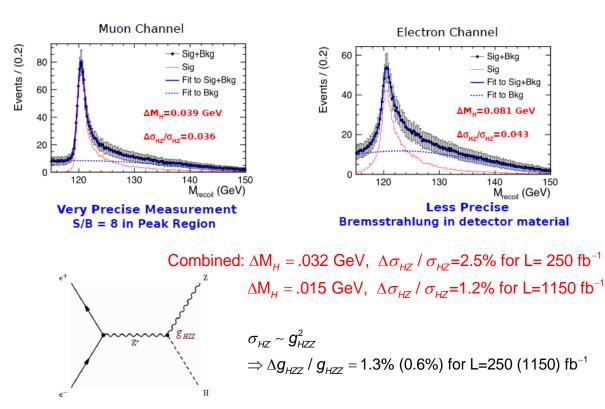
ILC: e^+e^- Linear Collider at 250 GeV < \sqrt{s} < 1000 GeV


Energy/Lumi Scenarios for Snowmass

- Each scenario corresponds to accumulated luminosity at a certain point in time.
- Assumption: run for 3X10⁷ s at baseline lumi at each of Ecm=250,500,1000 GeV, in that order. Then go back and run for 3X10⁷ s at upgrade lumi at each of Ecm=250,500,1000 GeV.

Nickname	Ecm(1)	Lumi(1)	+	Ecm(2)	Lumi(2)	+	Ecm(3)	Lumi(3)	Runtime	Wallplug E
	(GeV)	(fb^{-1})		(GeV)	(fb^{-1})		(GeV)	(fb^{-1})	(yr)	(MW-yr)
ILC(250)	250	250							1.1	130
ILC(500)	250	250		500	500				2.0	270
ILC(1000)	250	250		500	500		1000	1000	2.9	540
ILC(LumÚp)	250	1150		500	1600		1000	2500	5.8	1220

QUALITATIVE DIFFERENCES BETWEEN ILC & LHC


- All beam crossings are triggered at the ILC
- All background is electroweak.
- Roughly, the detection efficiency is independent of decay mode $\Rightarrow \Delta(\sigma \cdot BR) / \sigma \cdot BR \propto 1 / \sqrt{BR}$
- LHC Higgs detection efficiency is uneven across decay modes.
- Higgs was discovered in decays modes with γ, e, μ, which have relatively small BR's
- Qualitatively, there is complementarity between the ILC and LHC with respect to decay modes.

QUALITATIVE DIFFERENCES BETWEEN ILC & LHC

- Almost all ILC Higgs measurements are measurements of σ •BR .
- One crucial measurement is different: the Higgs recoil measurement of $\sigma(e^+e^- \rightarrow ZH)$.
- σ_{ZH} is the key that unlocks the door to model independent measurements of the Higgs BR's and Γ_{tot} at the ILC.

 All LHC Higgs measurements are measurements of *σ*•BR

QUALITATIVE DIFFERENCES BETWEEN ILC & LHC

ILC model independent global coupling fit using 32 σ •BR measurements Y_i and σ_{ZH} measurement Y_{33}

$$\chi^{2} = \sum_{i=1}^{i=33} \left(\frac{Y_{i} - Y_{i}'}{\Delta Y_{i}}\right)^{2},$$

$$Y_i^{'} = F_i \cdot \frac{g_{HZZ}^2 g_{Hb\bar{b}}^2}{\Gamma_0}$$
, or $Y_i^{'} = F_i \cdot \frac{g_{HWW}^2 g_{Hb\bar{b}}^2}{\Gamma_0}$, or $Y_i^{'} = F_i \cdot \frac{g_{Htt}^2 g_{Hb\bar{b}}^2}{\Gamma_0}$

$$F_i = S_i G_i \quad \text{where } S_i = \left(\frac{\sigma_{ZH}}{g_Z^2}\right), \ \left(\frac{\sigma_{\nu\bar{\nu}H}}{g_W^2}\right), \text{ or } \left(\frac{\sigma_{t\bar{t}H}}{g_t^2}\right), \text{ and } G_i = \left(\frac{\Gamma_i}{g_i^2}\right).$$

The cross section calculations S_i do not involve QCD ISR. The partial width calculations G_i do not require quark masses as input.

We are confident that the total theory errors for S_i and G_i will be at the 0.1% level at the time of ILC running.

ILC Measurement Summary

Table 5.1. Expected accuracies for cross section and cross section times branching ratio measurements for the
$125 \text{ GeV} h$ boson assuming you run 3×10^7 s at the baseline differential luminosity for each center of mass energy. For
invisible decays of the Higgs, the number quoted is the 95% confidence upper limit on the branching ratio.

\sqrt{s} and $\mathcal L$	$250{ m fb}^{-1}$ a	$500{ m fb}^{-1}$ at $500{ m GeV}$				$1{ m ab}^{-1}$ at $1{ m TeV}$			
$(P_{e^{-}}, P_{e^{+}})$	(-0.8,	+0.3)		(-0.8,	+0.3)		(-0.8,+0.2)		
	Zh	$\nu \bar{\nu} h$	Zh	$\nu \bar{\nu} h$	$t\bar{t}h$	Zhh	$ u \overline{ u} h$	$t\bar{t}h$	$ u \overline{ u} hh$
$\Delta \sigma / \sigma$	2.6%	-	3.0	-		42.7%			26.3%
BR(invis.)	< 0.9 %	-	-	-	-				
mode				$\Delta(\sigma \cdot B)$	$R)/(\sigma \cdot I)$	BR)			
$h ightarrow b \overline{b}$	1.2%	10.5%	1.8%	0.7%	28%		0.5%	6.0%	
$h \to c \bar{c}$	8.3%	-	13%	6.2%			3.1%		
h ightarrow gg	7.0%	-	11%	4.1%			2.3%		
$h \to WW^*$	6.4%	-	9.2%	2.4%			1.6%		
$h ightarrow au^+ au^-$	4.2%	-	5.4%	9.0%			3.1%		
$h \rightarrow ZZ^*$	19%	-	25%	8.2%			4.1%		
$h ightarrow \gamma \gamma$	34%	-	34%	23%			8.5%		
$h \rightarrow \mu^+ \mu^-$	100%	-	-	-			31%		

Table 5.2. Expected accuracies for cross section and cross section times branching ratio measurements for the 125 GeV h boson assuming you run 3×10^7 s at the sum of the baseline and upgrade differential luminosities for each center of mass energy. For invisible decays of the Higgs, the number quoted is the 95% confidence upper limit on the branching ratio.

\sqrt{s} and $\mathcal L$	$1150{\rm fb}^{-1}$	$1600{ m fb}^{-1}$ at $500{ m GeV}$				$2.5 \mathrm{ab}^{-1}$ at 1 TeV			
$(P_{e^{-}}, P_{e^{+}})$	(-0.8	,+0.3)		(-0.8,	+0.3)		(-0.8,+0.	2)
	Zh	$ u \overline{ u} h$	Zh	$\nu \bar{\nu} h$	$t\bar{t}h$	Zhh	$ u \overline{ u} h$	$t\bar{t}h$	$ u \overline{ u} hh$
$\Delta \sigma / \sigma$	1.2%	-	1.7	-		23.7%			16.7%
BR(invis.)	< 0.4 %	-	-	-			-		
mode			4	$\Delta(\sigma \cdot BF)$	$R)/(\sigma \cdot R)$	3R)			
$h ightarrow b ar{b}$	0.6%	4.9%	1.0%	0.4%	16%		0.3%	3.8%	
$h \rightarrow c \bar{c}$	3.9%	-	7.2%	3.5%			2.0%		
h ightarrow gg	3.3%	-	6.0%	2.3%			1.4%		
$h \to WW^*$	3.0%	-	5.1%	1.3%			1.0%		
$h \rightarrow \tau^+ \tau^-$	2.0%	-	3.0%	5.0%			2.0%		
$h \rightarrow ZZ^*$	8.8%	-	14%	4.6%			2.6%		
$h ightarrow \gamma \gamma$	16%	-	19%	13%			5.4%		
$h \rightarrow \mu^+ \mu^-$	46.6%	-	-	-			20%		

THE QUALITATIVE DIFFERENCES BETWEEN ILC & LHC LEAD TO QUANTITATIVE IMPROVEMENTS OVER LHC

7 Parameter HXSWG Benchmark *

			ILC(1000)	ILC(LumUp)	
	LHC	2	250+500+1000	250+500+1000	\sqrt{s} (GeV)
Mode	$300 {\rm ~fb^{-1}}$	$3000 {\rm ~fb^{-1}}$	250+500+1000	1150 + 1600 + 2500	\dot{L} (fb ⁻¹)
$\gamma\gamma$	(5-7)%	(2-5)%	3.8 %	2.3 %	
gg	(6-8)%	(3-5)%	1.1 %	0.7 %	
WW	(4-5)%	(2-3)%	0.3 %	0.2 %	
ZZ	(4-5)%	(2-3)%	0.5 %	0.3 %	
$tar{t}$	(14 - 15)%	(7-10)%	1.3 %	0.9 %	
$b \overline{b}$	(10 - 13)%	(4-7)%	0.6 %	0.4 %	
$\tau^+\tau^-$	(6-8)%	(2-5)%	1.3 %	0.7 %	

* Assume
$$\kappa_c = \kappa_t$$
 & $\Gamma_{tot} = \sum_{\text{SM decays i}} \Gamma_i^{SM} \kappa_i^2$

Other Higgs Couplings

			ILC(1000)	ILC(LumUp)	
		LHC	250+500+1000	250+500+1000	\sqrt{s} (GeV)
Mode	300 fb^{-1}	3000 fb^{-1}	250+500+1000	1150 + 1600 + 2500	$0 L (fb^{-1})$
$c\bar{c}$			1.8 %	1.0 %	
$\mu^+\mu^-$	30%	10%	16 %	10 %	
$\Gamma_T(h)$	-	-	4.5 %	2.3 %*	
hhh	-	50%	21 %	13 % *	
BR(invis.)	< (17 – 28)%	< (6-17)%	< 0.9 %	< 0.4 %	

- * Does not include results from searches for non-SM decays, including invisible decays. The error on the total width will improve significantly once these results are incorporated into the fit.
- * Current full simulation result using $H \rightarrow b\overline{b}$, WW * only. Results will improve as more Higgs decay modes are added, and as jet combinatoric problems are solved.

Alternate Luminosity Scenario

Nickname	Ecm(1)	Lumi(1)	+	Ecm(2)	Lumi(2)	Runtime	Wallplug E
	(GeV)	(fb^{-1})		(GeV)	(fb^{-1})	(yr)	(MW-yr)
ILC(250)	250	250				1.1	130
ILC(500)	250	250		500	500	2.0	270
ILC500(LumUp)	250	1150		500	1600	3.9	660

7 Parameter HXSWG Benchmark *

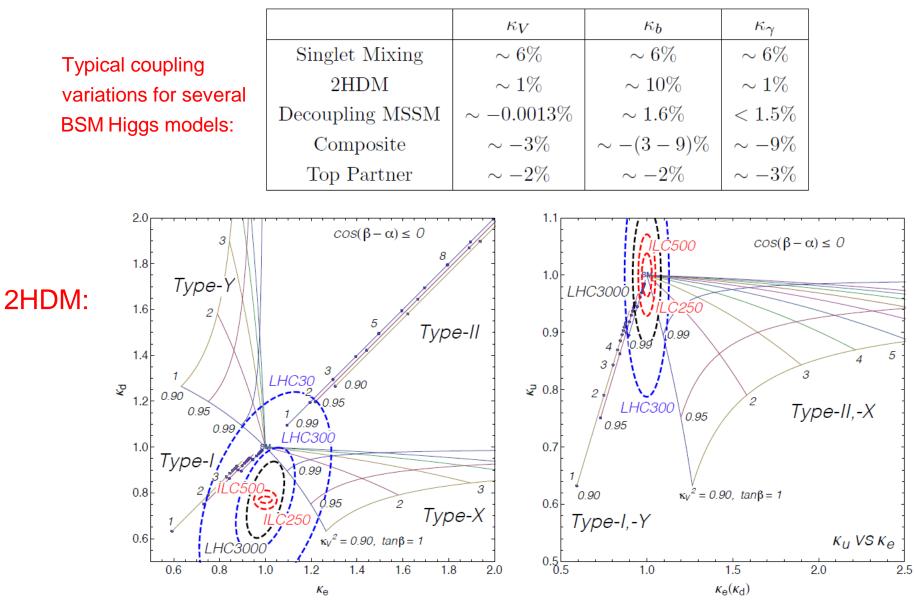
	ILC500(LumUp)	ILC(LumUp)
\sqrt{s} (GeV)	250+500	250+500+1000
$L (fb^{-1})$	1150 + 1600	1150 + 1600 + 2500
$\gamma\gamma$	4.4 %	2.3 %
gg	1.1 %	0.7 %
WW	0.3 %	0.2 %
ZZ	0.3 %	0.3 %
$t\bar{t}$	1.4 %	0.9 %
$b\overline{b}$	0.6 %	0.4 %
$\tau^+\tau^-$	1.0 %	0.7 %

* Assume $\kappa_c = \kappa_t$ & $\Gamma_{tot} = \sum_{\text{SM decays i}} \Gamma_i^{SM} \kappa_i^2$

Alternate Luminosity Scenario

Nickname	Ecm(1)	Lumi(1)	+	Ecm(2)	Lumi(2)	Runtime	Wallplug E
	(GeV)	(fb^{-1})		(GeV)	(fb^{-1})	(yr)	(MW-yr)
ILC(250)	250	250				1.1	130
ILC(500)	250	250		500	500	2.0	270
ILC500(LumUp)	250	1150		500	1600	3.9	660

Other Higgs Couplings


	ILC500(LumUp)	ILC(LumUp)
\sqrt{s} (GeV)	250+500	250+500+1000
$L (fb^{-1})$	1150 + 1600	1150 + 1600 + 2500
$c\bar{c}$	1.5 %	1.0 %
$\mu^+\mu^-$	42 %	10 %
$\Gamma_T(h)$	2.5 %	2.3 %
hhh	46 %	13 %
BR(invis.)	< 0.4 %	< 0.4 %

Combining LHC Results with Results from Various Future e^+e^- Colliders (from D. Zerwas and the SFITTER Group)

	LHC	LHC	HL-LHC	HL-LHC	HL-LHC	HL-LHC
coupling	+ILC	+ILC Lumi-up	+ILC Lumi-up	+CLIC	+ILC Lumi-up	+TLEP
					+CLIC	+CLIC
Γ_H	2.0 - 2.0%	1.1 - 1.1%	1.1 - 1.1%	4.4 - 7.3%	0.9 - 1.0%	1.1 - 1.2%
BR_{inv}	0.8 - 0.8%	0.4 - 0.4%	0.4 - 0.4%	2.2 - 3.9%	0.4 - 0.4%	0.5 - 0.5%
κ_γ	2.4 - 2.7%	2.0 - 2.2%	1.3 - 2.0%	1.8 - 3.4%	1.2 - 2.0%	1.2 - 1.6%
κ_g	1.3 - 1.3%	0.8 - 0.8%	0.8 - 0.8%	1.3 - 2.0%	0.6 - 0.6%	0.6 - 0.6%
κ_W	0.5 - 0.5%	0.3 - 0.3%	0.3 - 0.3%	1.1 - 1.9%	0.3 - 0.3%	0.3 - 0.3%
κ_Z	0.6 - 0.6%	0.3 - 0.3%	0.3 - 0.3%	1.1 - 1.9%	0.3 - 0.3%	0.3 - 0.3%
κ_{μ}	13.8 - 14.2%	9.9 - 9.9%	7.0 - 7.8%	5.2 - 6.0%	4.6 - 4.7%	4.0 - 4.1%
$\kappa_{ au}$	1.5 - 1.6%	0.9 - 0.9%	0.7 - 0.9%	1.3 - 2.3%	0.7 - 0.8%	0.5 - 0.6%
κ_c	1.6 - 1.6%	0.9 - 0.9%	0.9 - 0.9%	1.4 - 2.1%	0.7 - 0.7%	0.7 - 0.7%
κ_b	0.8 - 0.8%	0.5 - 0.5%	0.5 - 0.5%	1.1 - 1.9%	0.3 - 0.3%	0.4 - 0.4%
κ_t	2.8 - 2.9%	1.9 - 1.9%	1.7 - 1.8%	3.5 - 4.5%	1.7 - 1.8%	3.2 - 3.8%
Δ_{γ}	2.5 - 2.8%	2.0 - 2.2%	1.5 - 2.1%	2.8 - 4.6%	1.4 - 2.0%	1.7 - 2.0%
Δ_g	3.8 - 3.8%	2.5 - 2.5%	2.3 - 2.4%	4.1 - 4.8%	2.1 - 2.3%	4.0 - 4.7%

What do these precision values mean?

For Higgs couplings, better precision means greater discovery potential.

Backup Slides

Table 6.3. Summary of expected accuracies for the three cross sections and eight branching ratios obtained from an
eleven parameter global fit of all available data. The four columns refer to ILC energy and luminosity scenarios 1,2,3,
and 4 respectively.

	ILC(250)	ILC500	ILC(1000)	ILC(LumUp)				
process	$\Delta\sigma/\sigma$							
$e^+e^- \rightarrow ZH$	2.6 %	2.0 %	2.0 %	1.0 %				
$e^+e^- \rightarrow \nu \bar{\nu} H$	11 %	2.3 %	2.2 %	1.1 %				
$e^+e^- \to t\bar{t}H$	-	28 %	6.3 %	3.8 %				
mode	$\Delta \mathrm{Br}/\mathrm{Br}$							
$H \to ZZ$	19 %	7.5 %	4.2 %	2.4 %				
$H \to WW$	6.9 %	3.1 %	2.5 %	1.3 %				
$H \to b\bar{b}$	2.9 %	2.2 %	2.2 %	1.1 %				
$H \to c\bar{c}$	8.7 %	5.1 %	3.4 %	1.9 %				
$H \rightarrow gg$	7.5 %	4.0 %	2.9 %	1.6 %				
$H \to \tau^+ \tau^-$	4.9 %	3.7 %	3.0 %	1.6 %				
$H \to \gamma \gamma$	34 %	17 %	7.9 %	4.7 %				
$H \to \mu^+ \mu^-$	100 %	100 %	31 %	20 %				

Table 10.1. Summary of expected accuracies $\Delta g_i/g_i$ for model independent determinations of the Higgs boson couplings. The theory errors are $\Delta F_i/F_i = 0.1\%$. For the invisible branching ratio, the numbers quoted are 95% confidence upper limits. The four columns refer to ILC energy and luminosity scenarios 1,2,3, and 4 respectively.

	ILC(250)	ILC(500)	ILC(1000)	ILC(LumUp)
\sqrt{s} (GeV)	250	250+500	250+500+1000	250+500+1000
L (fb ⁻¹)	250	250 + 500	250 + 500 + 1000	1150 + 1600 + 2500
$\gamma\gamma$	18 %	8.4 %	4.0 %	2.4 %
gg	6.4 %	2.3 %	1.6 %	0.9 %
WW	4.8 %	1.1 %	1.1 %	0.6 %
ZZ	1.3 %	1.0 %	1.0 %	0.5 %
$t\bar{t}$	_	14 %	3.1 %	1.9 %
$b\overline{b}$	5.3 %	1.6 %	1.3 %	0.7 %
$\tau^+\tau^-$	5.7 %	2.3 %	1.6 %	0.9 %
$c\bar{c}$	6.8 %	2.8 %	1.8 %	1.0 %
$\mu^+\mu^-$	91%	91%	16 %	10 %
$\Gamma_T(h)$	12 %	4.9 %	4.5 %	2.3 %
hhh	-	83 %	21 %	13 %
BR(invis.)	< 0.9 %	< 0.9 %	< 0.9 %	< 0.4 %

Table 10.4. Summary of expected accuracies $\Delta g_i/g_i$ for model independent determinations of the Higgs boson couplings. The theory errors are $\Delta F_i/F_i = 0.1\%$. For the invisible branching ratio, the numbers quoted are 95% confidence upper limits.

	ILC(250)	ILC(500)	ILC500(LumUp)
\sqrt{s} (GeV)	250	250 + 500	250+500
L (fb ^{-1})	250	250 + 500	1150 + 1600
$\gamma\gamma$	18 %	8.4 %	4.5 %
gg	6.4 %	2.3 %	1.2 %
WW	4.8 %	1.1 %	0.6 %
ZZ	1.3 %	1.0 %	0.5 %
$t\overline{t}$	_	14 %	7.8 %
$b\overline{b}$	5.3 %	1.6 %	0.8 %
$\tau^+\tau^-$	5.7 %	2.3 %	1.2 %
$c\overline{c}$	6.8 %	2.8 %	1.5 %
$\mu^+\mu^-$	91 %	91 %	42 %
$\Gamma_T(h)$	12 %	4.9 %	2.5 %
hhh	-	83 %	46 %
BR(invis.)	< 0.9 %	< 0.9 %	< 0.4 %

ILC Accelerator Parameters from TDR

Baseline Luminosity

Upgrade Luminosity

			Baseline 500 GeV Machine				1st Stage	L	Upgrade	$E_{\rm CM}$ Upgrade	
									10	A	B
Centre-of-mass energy	$E_{\rm CM}$	GeV	250	350	500		250		500	1000	1000
Collision rate	$f_{\rm rep}$	Hz	5	5	5		5		5	4	4
Electron linac rate	$f_{ m linac}$	Hz	10	5	5		10		5	4	4
Number of bunches	$n_{ m b}$		1312	1312	1312		1312		2625	2450	2450
Bunch population	N	$ imes 10^{10}$	2.0	2.0	2.0		2.0		2.0	1.74	1.74
Bunch separation	$\Delta t_{ m b}$	ns	554	554	554		554		366	366	366
Pulse current	I_{beam}	mA	5.8	5.8	5.8		5.8		8.8	7.6	7.6
Main linac average gradient	G_{a}	$MV m^{-1}$	14.7	21.4	31.5		31.5		31.5	38.2	39.2
Average total beam power	P_{beam}	MW	5.9	7.3	10.5		5.9		21.0	27.2	27.2
Estimated AC power	$P_{\rm AC}$	MW	122	121	163		129		204	300	300
RMS bunch length	$\sigma_{ m z}$	mm	0.3	0.3	0.3		0.3		0.3	0.250	0.225
Electron RMS energy spread	$\Delta p/p$	%	0.190	0.158	0.124		0.190		0.124	0.083	0.085
Positron RMS energy spread	$\Delta p/p$	%	0.152	0.100	0.070		0.152		0.070	0.043	0.047
Electron polarisation	P_{-}	%	80	80	80		80		80	80	80
Positron polarisation	P_+	%	30	30	30		30		30	20	20
Horizontal emittance	$\gamma \epsilon_{\mathbf{x}}$	μm	10	10	10		10		10	10	10
Vertical emittance	$\gamma \epsilon_{ m y}$	nm	35	35	35		35		35	30	30
IP horizontal beta function	β_{r}^{*}	mm	13.0	16.0	11.0		13.0		11.0	22.6	11.0
IP vertical beta function	$egin{array}{c} eta_{\mathrm{x}}^{*} \ eta_{\mathrm{y}}^{*} \end{array}$	mm	0.41	0.34	0.48		0.41		0.48	0.25	0.23
IP RMS horizontal beam size	σ^*_{x}	nm	729.0	683.5	474		729		474	481	335
IP RMS veritcal beam size	$\sigma_{\mathrm{y}}^{\mathrm{x}}$	nm	7.7	5.9	5.9		7.7		5.9	2.8	2.7
Luminosity	L	$ imes 10^{34}\mathrm{cm}^{-2}\mathrm{s}^{-1}$	0.75	1.0	1.8		0.75		3.6	3.6	4.9
Fraction of luminosity in top 1%	$L_{0.01}/L$		87.1%	77.4%	58.3%		87.1%		58.3%	59.2%	44.5%
Average energy loss	δ_{BS}		0.97%	1.9%	4.5%		0.97%		4.5%	5.6%	10.5%
Number of pairs per bunch crossing	$N_{ m pairs}$	$ imes 10^3$	62.4	93.6	139.0		62.4		139.0	200.5	382.6
Total pair energy per bunch crossing	$E_{\rm pairs}$	TeV	46.5	115.0	344.1		46.5		344.1	1338.0	3441.0

Lumi Upgrade at Ecm=250 GeV*

* not in TDR - private communication from Marc Ross and Nick Walker

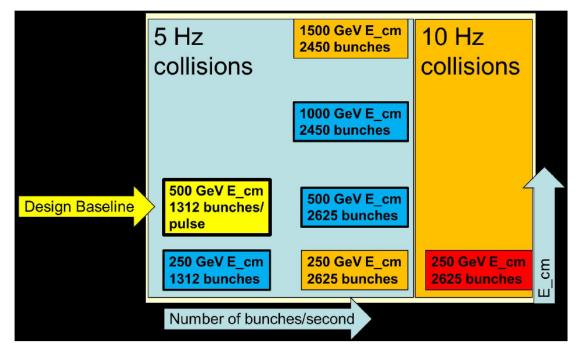


Table 1.2. ILC Higgs factory operational modes

					1st Stage Higgs Factory		Baseline ILC, after Lumi Upgrade	High Rep Rate Operation		
	Baseline Luminosity									
		Centre-of-mass energy	$E_{\rm CM}$	GeV	250		250		250	
	Upgrade Luminosity	Collision rate Electron linac rate Number of bunches Pulse current	$f_{ m rep} \ f_{ m linac} \ n_{ m b} \ I_{ m beam}$	Hz Hz mA	5 10 1312 5.8		5 10 2625 8.75		10 10 2625 8.75	
		Average total beam power Estimated AC power	$P_{ m beam}$ $P_{ m AC}$	MW MW	5.9 129		10.5 160		21 200	
		Luminosity	L	$ imes 10^{34}\mathrm{cm}^{-2}\mathrm{s}^{-1}$	0.75	5	1.5		3.0	