Michael's Program

$$L = \prod_{i=1}^{34} e^{-\frac{1}{2} \left(\frac{Y_i - Y'_i}{\Delta Y_i}\right)^2} \qquad \kappa_H = \sum_i \kappa_i^2 \operatorname{Br}_i|_{\mathrm{SM}}$$

- 9 couplings $\kappa_i \rightarrow 9$ random numbers.
- κ_W, κ_Z with up limit 1; Br(inv)-->(0,1); others no boundaries.
- event generator --> (κ₁,κ₂,κ₃...κ₉); for each event, calculate the likelihood as the weight.
- large statistics --> distribution of each random numbers (p.d.f. of κ_i) --> give the mean value and 68% interval.

global fit -- Michael's program + w/ sys error

base	lumi		
250 GeV:	250 fb ⁻¹		250
500 GeV:	500 fb ⁻¹		500
1 TeV:	1000 fb ⁻¹		1

uminosity upgrade						
	250 GeV:	1150 fb ⁻¹				
	500 GeV:	1600 fb ⁻¹				
	1 TeV:	2500 fb ⁻¹				

MH = 125 GeV P(e-,e+)=(-0.8,+0.3) @ 250, 500 GeV P(e-,e+)=(-0.8,+0.2) @ 1 TeV

coupling	baseline		luminosity upgrade			comparison		
$\Delta g/g$	250 GeV	250 GeV + 500 GeV	250 GeV + 500 GeV + 1 TeV	250 GeV	250 GeV + 500 GeV	250 GeV + 500 GeV + 1 TeV		250 GeV + 500 GeV + 1 TeV
HZZ	0.44%	0.30%	0.28%	0.21%	0.15%	0.14%		0.25%
HWW	1.9%	0.24%	0.13%	1.1%	0.13%	0.077%		0.20%
Hbb	2.8%	0.95%	0.56%	1.4%	0.51%	0.34%		0.36%
Hcc	5.1%	2.6%	1.4%	2.4%	1.3%	0.82%		0.78%
Hgg	3.8%	1.9%	1.1%	2.2%	1.0%	0.68%		0.69%
Ηττ	3.3%	1.8%	1.2%	1.7%	0.96%	0.72%		0.74%
Ηγγ	4.8%	4.2%	3.0%	4.1%	3.2%	2.1%		2.3%
Ημμ(*)	-	-	16%	-	-	10%		0.89%
Htt	12%	9.6%	2.9%	12%	6.8%	1.8%		0.87%
Γ ₀	4.7%	1.6%	0.94%	2.6%	0.85%	0.56%		0.79%

(*) Hµµ not included in Michael's program, as same as those from MI fit

 $0 < 1 - \kappa_Z < 0.004 \qquad 0 < 1 - \kappa_W < 0.003$