Some progresses of SSA study 25th October 2013 K. Kotera Shinshu University For Physics-Software meeting of ILD-Asia

1

uds jet energy: ScECAL vs DBD(Si-W-ECAL)

alternative half of layers are replaced with tile layers to avoid the ghosts

alternate with $5x5 \text{ mm}^2$ tile layers (right \rightarrow) \Rightarrow close to all $5x5 \text{ mm}^2$ tile ScECAL (right $- \bullet -$). alternate with $15x15 \text{ mm}^2$ tile layers \Rightarrow not so improves \rightarrow alternate with $10x10 \text{ mm}^2$ tile layers (left \rightarrow) \Rightarrow almost similar to the alternative with $5x5 \text{ mm}^2$

Measured photon energy (1 r event)

 π + 10GeV + photon 20 GeV

- distance <10 mm, 5 mm
 <p>Both do not have good resolution.

$\pi^+-\gamma$ separation

18th Oct Summary and plan

- 5x5 mm² ScECAL has similar performance of JER to DBD result of SiW ECAL,
- a bit degrading (~0.2%) with 45x5 mm² ScECAL w/ SSA,
- alternately replacing layers with 5 x 5 mm² tile significantly improves the JER of strip ScECAL,
- alt.15 x 15 mm² tile layers cannot so improve the situation,
- alt. 10 x 10 mm² tile layers make the same effect as the 5x5 mm²,
- alternate insertion of 5 x 5 mm² tile layers certainly improves $\pi^+-\gamma$ separation.

Plan

- 20 layers (strip45x5/5x5tile), 10 layers (strip 45x5), running
- 20 layers (strip45x5/10x10tile), 10 layers (strip 45x5),
- n layers (strip45x5/10x10tile), 30-n layers (strip 45x5).

alternate strip/tile 20 layers + strip 10 layers

alt.(X:45x5 + 10x10 + Y:45x5 + 10x10) x 30 layers
 Left: --alt.(X:45x5 + 5x5 + Y:45x5 + 5x5) x 20 layers
 + (45x5:X + 45x5:y) x 10 layers
 Right: --alt.(X:45x5 + 10x10 + Y:45x5 + 10x10) x 20 layers
 + (X:45x5 + Y:45x5) x 10 layers

7

alternate strip/tile 20 layers + strip 10 layers

alt.(X:45x5 + 10x10 + Y:45x5 + 10x10) in 30 layers
 Left: - alt.(X:45x5 + 5x5 + Y:45x5 + 5x5) in 20 layers
 + (45x5:X + 45x5:y) in 10 layers
 Right: - alt.(X:45x5 + 10x10 + Y:45x5 + 10x10)
 + X:45x5 + Y:45x5) in 30 layers

alternate hybrid for tau decay

T.Ogawa studies tau decays comparing among 4 types,

pure Si-W ECAL,
 alternate Si-tile/Sc-strip ECAL,
 pure Sc-strip ECAL

JER for those types of ECALs

Default design of ScECAL in Mokka and changed film thickness of reflector

In this study thickness of reflector is changed to: 0.107 mm, 0.207 mm and 0.407 mm.

keeping;

- width of scintillator + reflector to 5.14 mm (default), replacing a part of scintillator with excess of reflector film,
- thickness of scintillator = 1.0 mm,
- thickness of scintillator + reflector + PCB = 1.914 mm, replacing a part of PCB with excess of reflector film,

very ideal design in order only to see effect of side dead vol.

Effect of reflector thickness

There is no significant deterioration of jet energy resolution due to the dead volume comes from reflector thickness at least up to 0.2 mm.

Default design of ScECAL in Mokka and changed MPPC dead volume.

default: no dead volume on both side of MPPC

technological prototype: has dead volumes on both side of MPPC.

instead to make air dead volume, MPPC size is extended to the width of scintillator; an MPPC also makes a dead volume in Mokka.

Effect of dead volume on both side of MPPC

There is no significant deterioration of jet energy resolution due to the dead volume side of MPPC.

Summary

There is no significant deterioration due to the dead volume from reflector and MPPC.

outlook: MPPC saturation effect Response non uniformity

Other solution(2)

2013年 10月 25日 金曜日

ghost problem and its solution(1)

