

ILD Silicon Tracking

Yorgos Voutsinas

DESY FLC

georgios.voutsinas@desy.de

ILD phone meeting - 29/10/2013

Outline

- Motivation
 - > Find low P_{T} tracks
- Approaches
 - Cellular automaton (standalone Si tracking)
 - Track extrapolation from TPC (not standalone)
 - Combination of CA and Kalman filter based track following
- Main issue
 - > Time per evt in presence of beamstrahlung hits
 - Minimisation of ghost / bkg tracks
- Sample
 - Muons at fixed P_{T} + 500 GeV beam bkg hits overlayed

Standalone Cellular Automaton

- Make hit combinations in all layers, inside a predefined range (2D angular sectors)
 - Huge number of hit combinations
- Test the combinations vs various connection criteria
 - Huge number of "raw" tracks
- Prefit the ones who survive
- If χ^2 prob > 0.005, keep them as candidate tracks

Based on the CA algorithm for the FTD

layer	$\sigma_{_{spatial}}(\mu m)$	σ _{time} (μs)
L1	3/6	50 / 10
L2	4	100
L3	4	100

DBD VXD "slow"

Proposed VXD design for $\sqrt{s} = 1$ TeV "fast"

layer	$\sigma_{_{spatial}}(\mu m)$	$\sigma_{_{time}}$ (µs)
L1	3/6	50 / 2
L2	4 / 10	100 / 7
L3	4 / 10	100 / 7

Criteria Optimisation

- Combinatorics reduction
- We first examine a favourable case
 - Standalone VXD
 - Hits combined only with hits from the next layer
 - Meticulously optimise the criteria for each layer to layer transition

- Criteria optimised for transition from each layer to the next one
- 2 rounds, with 98% and 95% acceptance on all momentum range
- Sample
 - ttbar

Standalone CA – some results

	eff	Ghost - bkg	Time (s/evt)
Slow	98 %	5.7	325
Fast	98 %	0.4	378

- 10 GeV muons, + beam bkg
 - Time consuming
 - > 3D angular sectors, optimised for low Pt track reconstruction
 - > Is there a faster/more efficient way to organise our data than 2D angular sectors?

TPC to Outer VXD – not Standalone

Prob. to associate bkg hit at outermost VXD

ILD phone meeting - 29/10/2013

What about Spatial resolution

- Fast VXD
- Slightly degraded s.p. resolution at sensors on middle & outer superlayer
- Could that effect the IP resolution?

We didn't observe any such effect

Cell. Automaton for seeding - Standalone

- In Cellular automaton we try to connect every hit with all hits inside a certain ϕ - θ range on subsequent sectors
- Very time consuming
 - Try to organise our data in a smarter way
 - Exclude inner layer from cellular automaton
- The idea is to find a seed using CA at the SIT, outer & intermediate VXD
- Then propagate to inner layer
- Seed hits ≥ 5 or ≥ 4

Results

IP resolution

Time: 20 - 50 s / event

Outlook

• Standalone approach

- Explore more the low P_{T} range, try to find a minimum P_{T}
- Seeding only at SIT + outer VXD layers
- Validate the results with physics sample
- Further optimisation of time performance
 - Data structures
 - Is the 2D angular sectors the best option?
 - Software wise
 - > Are there libraries which can perform e.g. matrix algebra faster?

• Propagation from TPC

- VXD SIT optimisation studies
- S.p. resolution of VXD outer intermediate layers
 - Negligible effect observed on IP resolution