Study of Tracking and Flavor Tagging with FPCCD Vertex Detector

Tohoku University Tatsuya Mori

Introduction

Full ILC Program

Road of Vertex Detector

one of the ILC physics goals : Precise measurement of Higgs coupling constant to "c, b-quark, gluon"

We need VXD with high performance → FPCCD

FPCCD Vertex Detector

- FPCCD (Fine Pixel CCD) Features
- sensitive thickness: 15 μm
- total thickness: 50 μm
- *#* of pixels : ∼ 0.4 x 10⁹
- Cluster of hit pixels
 - ✓ Extrapolation of tracks
 - ✓ Position resolution
 - ✓ Discrimination : BG cluster & signal cluster
- Readout: per 1 train

Geometry Iayer length from pixel size I.P. (mm) pixel size (μm²) 0, 1 16, 18 5 × 5 2, 3 37, 39 10 × 10 4, 5 58, 60 10 × 10

Merit:

Noise from Electromagnetic Interference (EMI) can be ignored

Demerit: Tracking is challenging due to so many hits

Occupancy and Impact Parameter Resolution

Camera Cuts Graphic GENERAL SHORTCUTS: [F] Front projec large (7680 × 4144) very large (19200 × 10360) very very large (38400 × 20720) extrem large (192000 × 103600) (a) 43 (e) 44 (ESC) Quit CED [S] Side projecti [] Show FPS i:128: TP DATA LAVERS: (X) [0] 00: MCParticle (_) [1] 01: VXDCollection, . 4 () [(] 29; ECAL [h] Toggle shortcut frame [CTRL+z] Undo v] Fisheye projection ()[[23:ELAL ()[[9]30:HCAL ()[[]31:YOAE ()[]32:Coll ()[]33:LCAL, Beamoal, ... ()[] 34:SET [b] Change background color (i) (¹) 16: [n] Reset view [R] Reset CED [f] Front view [s] Side view [m] Decrease detector cut angle (+) Zoom in (-) Zoom out (\Box) [~] Move in z-direction [<-] Move in -z-direction [<-] Move in -z-direction [`] Toggle all data layers () [2] 02: () [3] 03: Truth Tracks () [4] 04: Forward Tracks () [)] 10; () [!] 11 VXDTracker Hits, () (@) 12; DETECTOR LAVERS ()[c] Center [Z] Cut in z-axe direction Ø

Development of FPCCD Track Finder

2013/10/30

DBD Track Finder

Performance of DBD Track Finder + FPCCD

Fraction of Good Track : $\eta \equiv$

of tracks with VXD hits >= 5 && track purity > 75%

of MCParticles creating VXD sim-hits >= 6 && SIT sim-hits >= 4

Fraction : bad under $P_T = 1.7 \text{GeV/c} \rightarrow \text{FPCCD Track Finder}$

FPCCD Track Finder

Goal : Improvement of the fraction under $P_T = 1.7 \text{GeV/c}$

Development Policy : Silicon Track : already BAD → Full Track : BAD

I concentrated on Silicon Tracking

For ease, We don't consider SIT and FTD

We approximate VXD shape by cylinder

Track Seed

Track seeds are generated by combining 3 hits on each of the 3 layers in each area divided by 4.5° in the direction of Φ

red dash-line : range of extrapolation

If possible, we add remaining hits to tracks

Full Track

If possible, we combine TPC tracks with silicon tracks, and then refit tracks with Kalman Filter

Differences between DBD ver. and FPCCD ver.

FPCCD Track Finder

(FPCCD version)

We calculate Φ width enough to generate track seeds with $P_T > 0.18$ GeV/c on the basis of a hit on the outer layer

We generate track seeds from 3 hits on each of the 3 layers in the calculated Φ width

FPCCD Track Finder

(FPCCD version) Fitter : Kalman Filter

 Φ width for extrapolation : determined from track parameters from the fitter

Algorithm for matching hit clusters : optionally available : purity ↑

Fraction of Good Track : $\eta \equiv$

of tracks with VXD hits >= 5 && track purity > 75%

of MCParticles creating VXD sim-hits >= 6 && SIT sim-hits >= 4

Tips : required P_T R_{in} of TPC : > 0.4 GeV/c R_{out} of TPC : > 1.8 GeV/c

Sample: ttbar @ 350 GeV (without BG)

Fraction : ~ 99% until $P_T = 0.6 \text{ GeV/c}$

Fraction of Good Track : $\eta \equiv$

of tracks with VXD hits >= 5 && track purity > 75%

of MCParticles creating VXD sim-hits >= 6 && SIT sim-hits >= 4

Sample: ttbar @ 350 GeV (without BG) |P| > 1 GeV/c Tips : SIT coverage $\cos\theta < 0.9$

Fraction : ~ 99 % within $\cos\theta = 0.9$

Fraction of Good Track : $\eta \equiv$

of tracks with VXD hits >= 5 && track purity > 75%

of MCParticles creating VXD sim-hits >= 6 && SIT sim-hits >= 4

Tips : required P_T R_{in} of TPC : > 0.4 GeV/c R_{out} of TPC : > 1.8 GeV/c

Sample: ttbar @ 350 GeV

There is little deterioration until 0.6 GeV/c

Fraction of Good Track : $\eta \equiv$

of tracks with VXD hits >= 5 && track purity > 75%

of MCParticles creating VXD sim-hits >= 6 && SIT sim-hits >= 4

Sample: ttbar @ 350 GeV |P| > 1 GeV/c Tips : SIT coverage $\cos\theta < 0.9$

There is little deterioration

Performance Evaluation of Flavor Tagging

Setup

MC sample : Z→bb, cc, qq (q : u, d, s) @ 91.2GeV (# of each events of them : 25000 events)

Efficiency : # of signal jets # of true jets

Purity : # of signal jets # of signal jets & noise jets

Assumption of Branching Fraction : \rightarrow for calculating purity BF(Z \rightarrow bb) = 0.1512 BF(Z \rightarrow cc) = 0.1203 BF(Z \rightarrow qq) = 0.428

Performance of Flavor Tagging

Summary and Plan

- Summary
- FPCCD Track Finder has been developed
 - Fraction of Good Track & Performance of Flavor Tagging
 >more improvement can be seen than using DBD tracking

Plan

- Evaluation of flavor tag in the presence of pair BGs
- Evaluation of measurement precision of Higgs coupling to b, c, and g by using FPCCD and analyzing e+e-→ZH @ 250 GeV