Higgs Self-Coupling Measurement at the ILC.

Claude-Fabienne Dürig¹, Junping Tian², Jenny List¹, Keisuke Fujii²

¹DESY Hamburg, Germany ²KEK, Japan

34th General Physics Meeting, KEK Japan

1 Introduction

2 Theoretical Background Trilinear self-coupling Production processes

3 Analysis status

Previous studies and current status Strategy and ongoing work

4 Summary and Outlook

discovery of the Higgs in 2012

 Higgs properties can be measured precisely at ILC (m_H, Γ^{tot}_H, etc.)

missing: **Higgs potential**, which represents test of EWSB and mass generation

 to probe shape of Higgs potential we need to determine the Higgs self-coupling

Trilinear Higgs self-coupling

Higgs potential after spontaneous symmetry breaking for physical Higgs field:

$$V(\eta_H) = rac{1}{2}m_H^2\eta_H^2 + \lambda v \eta_H^3 + rac{1}{4} ilde{\lambda}\eta_H^4$$

G_F: Fermi constant η_H: physical Higgs field ν: vacuum expectation value

http://www.quantumdiaries.org

> trilinear λ and quartic $\tilde{\lambda}$ Higgs couplings are defined as:

$$\lambda = \tilde{\lambda} = \lambda_{SM} = \frac{m_H^2}{2\nu^2}$$

- \blacktriangleright verify the shape of Higgs potential \longrightarrow measure three terms
- \blacktriangleright to measure λ one must observe double Higgs production at lepton or hadron colliders

Double Higgs production processes

irreducible Feynman diagrams which do not concern Higgs self-coupling

 Interference between Higgs self-coupling and irreducible diagrams make measurement complicated

Sensitivity of self-coupling to $\sigma(ZHH)$

cross-section $\sigma(ZHH)$

- $\sigma(\lambda) = a\lambda^2 + b\lambda + c$
- a: Higgs self-coupling diagram
- b: interference between self-coupling and irreducible diagrams
- c: irreducible diagrams

> precision of Higgs self-coupling:

$$\frac{\Delta\lambda}{\lambda} = \mathsf{X} \cdot \frac{\Delta\sigma}{\sigma}$$

- X = 0.5 without interference X = 1.8 for $m_{\rm H} = 120~{\rm GeV}$ at $\sqrt{s} = 500~{\rm GeV}$
- new weighting method improves factor X = 1.66 (J.Tian:LCWS12 / ECFA13)
- ▶ better improvement expected for $m_H = 125 \text{ GeV}$ at $\sqrt{s} = 500 \text{ GeV}$, since without weighting X = 1.74

Analysis strategy - Decay Channels

> Measurement at $\sqrt{s} = 500$ GeV and $\mathcal{L} = 2$ ab⁻¹

$e^+e^- \to ZHH \to I^-I^+HH$

$e^+e^- \to ZHH \to \nu\bar{\nu}HH$

 $\begin{array}{l} \mbox{2neutrino 4jet mode (20\% \times 70\% \times 70\% \approx 9.8\%)} \\ \mbox{Z} \longrightarrow \nu \bar{\nu} \quad \mbox{H} \longrightarrow b \bar{b} \quad \mbox{H} \longrightarrow b \bar{b} \end{array}$

$e^+e^- \to ZHH \to q\bar{q}HH$

6jets mode (70% \times 70% \times 70% \approx 34%)

 $Z \longrightarrow q \bar{q} \quad H \longrightarrow b \bar{b} \quad H \longrightarrow b \bar{b}$

Previous Linear Collider Studies for $m_H = 120 \text{ GeV}$

Previous Linear Collider Higgs self-coupling studies for $m_H = 120$ GeV:

> ZHH at 500 GeV with $\mathcal{L} = 2 \text{ ab}^{-1}$ based on fast simulation:

precision of 18% on Higgs self-coupling includes leptonic and hadronic Z-channel (arXiv:hep-ex/0101028v1)

> ZHH at 500 GeV with $\mathcal{L} = 2 \text{ ab}^{-1}$ based on full simulation:

precision of 160% on Higgs self-coupling only includes hadronic Z-decay mode (arXiv:hep-ex/0901.4895v1)

recent study:

ZHH at 500 GeV with $\mathcal{L} = 2 \text{ ab}^{-1}$ based on DBD full simulation:

precision of 44% on Higgs self-coupling complete investigation of all Z-channels (LC-REP-2013-003)

Current Status (m_H=120 GeV)

> Measurement at $\sqrt{s} = 500$ GeV, $\mathcal{L} = 2$ ab⁻¹ and $P(e^+e^-) = (0.3, -0.8)$

modes	signal	background	significance		
		(tt, ZZ, ZZH, ZZZ)	excess measureme		
$\rm ZHH \rightarrow I^-I^+HH$	3.7	4.3	1.5σ 1.1σ		
	4.5	6.0	1.5σ	1.2σ	
$ZHH \to \nu \bar{\nu} HH$	8.5	7.9	2.5σ	2.1σ	
${\sf ZHH} \to {\sf q\bar{q}HH}$	13.6	30.7 2.2 <i>σ</i>		2.0σ	
	18.8	90.6	1.9σ	1.8σ	

> here: investigated Higgs mass $m_{\rm H}$ = 120 GeV

> cross-section: $\frac{\delta \sigma_{ZHH}}{\sigma_{ZHH}} = 27\% \ (> 3.5\sigma)$ +

Higgs self-coupling:
$$\frac{\delta\lambda}{\lambda} = 44\%$$

Next steps

- > perform analysis with new $m_{\rm H} = 125 \text{ GeV}$ samples
- > consider low- $p_T \gamma \gamma \rightarrow$ hadrons overlay
- different starting points for improvement

Selection strategy for leptonic channel

1 select two isolated charged leptons consistent with M_Z

 $|M_{\rm 2lep}-M_{\rm z}|<$ 40 GeV

- **2** remove low- $p_T \gamma \gamma \rightarrow$ hadrons overlay
- 3 force the other reconstructed particles into four jets
- ${f 4}$ combine the four jets by choosing combination with smallest χ^2

$$\chi^{2} = \frac{(M(j_{i}j_{j}) - M(H))^{2}}{\sigma_{H}^{2}} + \frac{(M(j_{k}j_{l}) - M(H))^{2}}{\sigma_{H}^{2}}$$

require: $|M_{\rm H}-125~{
m GeV}|<80~{
m GeV}$

in neural net analysis performed separately for signal and each background, output classifiers are used to suppress background

divide background into four different categories:

jets-poor background (llqq) semileptonic ttbar background (lvbbqq) full-hadronic background (6-jets and 4-jets) backgrounds with same final states (ZZH/ZZZ)

New DiLeptonSelection

old lepton selection:

> cut based on energy distributions in calorimeter

new lepton selection:

- neural net based (MVA)
- train neural net with samples for signal: eeHH and μμHH (with γγ-overlay) background: bbbb and lvbbqq (no γγ-overlay)
- > MVA output is written to lepton collection, can be optimised in final selection
- two leptons consistent with M_Z

neural net output for electrons

Claude Fabienne Dürig | Higgs self-coupling at ILC | 34th General Physics Meeting, KEK Japan | 10/21

neural net output for muons

New DiLeptonSelection

Example of input variable: energyratio

isolated lepton has small Econe, s energyratio close to one

Current Improvement

efficiency (%)	eehh	μμhh	bbbb	evbbqq	μvbbqq
new DBD	86.99	89.11	$1.682 \cdot 10^{-5}$	$3.15 \cdot 10^{-3}$	$1.96 \cdot 10^{-4}$
old DBD	85.7	88.4	0.028	1.44	0.10
old Lol	81.9	85.4	0.43	2.71	1.94

New lepton selection strategy increases signal efficiency. Suppression of hadronic and one-lepton backgrounds is significantly improved.

$\gamma\gamma$ overlay removal

Iow-p_T γγ → hadrons overlaid events per interaction:

 $< N_{\gamma\gamma} >= 1.7$

ILD/SiD standard \rightarrow overestimated

- ► apply FastJetClustering: k_T ExclusiveNJets4 → which R-value?
- ▶ for R ≥ 1.2 almost no increase in signal efficiency but in overlay

 \rightarrow best: R = 1.3

- use reconstructed particles in these
 4 jets for analysis
- until now ZHH and ZZH samples with overlay

Preselection for samples with $\gamma\gamma$ -overlay

	eeHH	μμΗΗ	eeqqH	μμqqΗ
expected no. events	13.50	13.52	75.34	75.53
lepton selection	11.74	12.05	68.41	67.26
k_T ExclusiveNJets4	11.61	12.04	64.66	67.23
combine four jets to two Higgs				
$ M_{ m H}-125~{ m GeV} <80~{ m GeV}$	11.09	11.51	62.84	65.24

Comparison to samples without $\gamma\gamma\text{-overlay missing}$:(\longrightarrow latest LCWS Thu. 14.11.13

Preliminary selection cuts ($m_{\rm H}$ = 125 GeV)

ZHH and ZZH samples with $\gamma\gamma$ background overlaid, other backgrounds in production

electron type:

	e1e1bb	e2e2bb	evbbqq	μvbbqq	τvbbqq	bbqqqq	bbbb	llbbbb	llqqh	bgrd	signal (llbbbb)
generated	$4.21\cdot 10^6$	$1.00\cdot 10^6$	$1.49\cdot 10^6$	$1.47\cdot 10^6$	931701	$2.89\cdot 10^6$	978472	106940	151500		293165
expected	284117	49565.7	248454	245936	245708	624060	40234.4	69.51	150.87	$1.74 \cdot 10^6$	40.503
preselection	2697.42	1414.96	519.97	74.967	31.614	4.209	0.381	14.971	128.084	4886.58	22.86 (7.531)
ltype = 11	2697.42	0.099	519.977	1.202	29.153	4.209	0.381	7.359	62.811	3322.62	11.24 (3.724)
$ M_{\rm Z}-91~{\rm GeV} <32~{\rm GeV}$	2383.93	0.049	426.935	0.337	23.439	1.799	0.296	7.081	62.234	2906.1	11.11 (3.696)
MVAIIbb > 0.66	57.583	0	290.564	0.337	15.473	1.799	0.129	5.247	46.328	417.458	8.83 (3.519)
MVAlvbbqq > 0.69	50.962	0	22.851	0	2.432	0.623	0.042	4.954	43.319	125.185	7.90 (3.361)
bmax3 > 0.2	3.996	0	0.289	0	0.269	0.311	0.042	4.398	8.953	18.259	3.62 (2.986)
MVAllbbbb > 0.21	1.299	0	0	0	0.014	0.311	0.042	1.071	3.862	6.599	2.96 (2.482)
$ M_H-125~{\rm GeV} <40~{\rm GeV}$	0.799	0	0	0	0.014	0.156	0	0.916	3.338	5.224	2.72 (2.303)

muon type:

	e1e1bb	e2e2bb	evbbqq	μvbbqq	τvbbqq	bbqqqq	bbbb	llbbbb	llqqh	bgrd	signal (llbbbb)
generated	$4.21\cdot 10^6$	$1.00\cdot 10^6$	$1.49\cdot 10^6$	$1.47\cdot 10^6$	931701	$2.89\cdot 10^6$	978472	106940	151500		293165
expected	284117	49565.7	248454	245936	245708	624060	40234.4	69.51	150.87	$1.74 \cdot 10^{6}$	40.503
preselection	2697.42	1414.96	519.97	74.967	31.614	4.209	0.381	14.971	128.084	4886.58	22.86 (7.531)
ltype = 13	0	1414.96	0	73.765	2.461	0	0	7.612	65.274	1563.97	11.616 (3.807)
$ \textit{M}_{\rm Z}-91~{\rm GeV} <32~{\rm GeV}$	0	1363.42	0	61.695	2.178	0	0	7.385	64.826	1499.51	11.513 (3.783)
MVAIIbb > 0.38	0	85.928	0	46.557	1.866	0	0	6.396	54.187	194.935	10.01 (3.726)
MVAlvbbqq > 0.75	0	80.675	0	4.968	0.254	0	0	6.101	51.096	143.095	8.935 (3.618)
bmax3 > 0.2	0	6.046	0	0	0	0	0	5.396	10.15	21.593	3.964 (3.211)
MVAIIbbbb > 0.23	0	2.132	0	0	0	0	0	1.122	3.750	7.005	3.123 (2.599)
$ M_H-125~{\rm GeV} <40~{\rm GeV}$	0	1.488	0	0	0	0	0	0.978	3.229	5.695	2.887 (2.421)

Claude Fabienne Dürig | Higgs self-coupling at ILC | 34th General Physics Meeting, KEK Japan | 14/21

Summary and Outlook

Conclusion

- > direct determination of Higgs potential through double Higgs production
- measurement of Higgs self-coupling challenging
- \succ recent DBD full simulation gives precision of 44% at $\sqrt{s}=500$ GeV
- starting points for improvement
- Iong term goal: precision of < 40%</p>

Outlook

- perform analysis for m_H = 125 GeV
- > consider low- $p_T \gamma \gamma \rightarrow$ hadrons overlay
- key algorithms: b-tagging, lepton selection, jet-finding, jet-clustering
- investigate kinematic fitting
- ➤ include the H→WW* mode (talk by Masakazu)
- optimise the analysis strategy (current selections are optimised for ZHH, not for the self-coupling diagram)

BACKUP SLIDES

Claude Fabienne Dürig | Higgs self-coupling at ILC | 34th General Physics Meeting, KEK Japan | 16/21

Higgs self-coupling measurement at LHC

Claude Fabienne Dürig | Higgs self-coupling at ILC | 34th General Physics Meeting, KEK Japan | 17/21

Higgs mechanism

Example: Lagrangean

$$\mathcal{L}=rac{1}{2}(\partial\phi)^2-rac{1}{2}\mu\phi^2-rac{1}{4}\lambda\phi^4$$

invariant under symmetry $\phi \longrightarrow -\phi$ but ground state is not!

Higgs mechanism in the Standard Model (electroweak symmetry breaking)

Start with 4 massless vector boson, coupling to Higgs field

3 massive vector bosons +1 massless vector boson + 1 massive scalar

 $W^{\pm}.Z^{0} + H$

http://www.quantumdiaries.org

NN training - Electrons

NN training - Muons

general difficulties

- irreducible SM diagrams: significantly degrade the coupling sensitivity
- \succ production cross-sections are small \longrightarrow high luminosities needed
- very large SM background

new difficulties

- Higgs mass reconstruction: wrong jet-pairing, mis-clustering
- flavor tagging and isolated lepton selection: need very high efficiency and purity
- > neural net training: separated neural-nets, large statistics needed

