The measurements of Higgs recoil mass and cross section at the $E_{CM} = 250$ GeV

Shun Watanuki^A, H.Yamamoto^A, A.Ishikawa^A, T.Suehara^B, K.Fujii^C

(A : Tohoku University, B : Kyushu University, C : KEK)

Target

One of the advantages of the ILC is model independent(MI) analysis of Higgs properties by recoil method.

How precise can we measure Higgs mass and cross section

by this method? The considered situation is ...

Higgs mass	Center of	Integrated	Spin	Detector
	Mass Energy	Luminosity	Polarization	Simulation
125 [GeV]	250 [GeV]	250 fb ⁻¹	P(e⁻, e⁺) =(-0.8, +0.3)	ILD_01_v05 (DBD ver.)

Using only Zh -> Ilh (I= μ , or e) signal event.

Signal and Background Events

- These are $\mu\mu$ h channel signal & BGs.
- For eeh channel study, character of
 - " μ " is altered to "e".

Lepton Selection

- Muon (and electron) selection
 - Momentum p > 15 [GeV]
 - Small (Large) energy deposite in caloriemeters
 - $E_{ecal} / E_{total} < 0.5 (> 0.6)$
 - $E_{total} / p_{track} < 0.3 (> 0.9)$
- Good track selection
 - Track with small error (different selections between polar angle of tracks, barrel or end cap) $dp / p^2 < 2.5 \times 10^{-5} \oplus 8 \times 10^{-4} / p$ (for $cos\theta < 0.78$)
 - dp / $p^2 < 5 \times 10^{-4}$ (for $\cos\theta > 0.78$)
 - Impact parameter (only for muon)
 - To suppress muons from tau decays which tend to have large impact parameters. $D_{\rm o}$ / $dD_{\rm o}$ < 5

Background Rejection

SP Tbal

cosomissing (0.99

Mrecoil = (115, 150)

Likelihood

 p_{td}^{T} $M_{dl}^{T} \in (80, 100)$ $M_{dl} \in (80, 2, 3, 0)$ $acop \in (0, 2, 3, 0)$

di-lepton events

Bremsstrahlung Recovery

- Only for eeh channel, the photon's momentum around final state electron ($\cos\theta > 0.999$) is added to the electron.
- This process contributes the distribution of recoil mass significantly.

Efficiency Table

μμh	signal		μμνν		μμff		τΙνν		τlff		others	
No Cut	2574		149636		160432		596518		83418		~10M	
Selection	2271	88.21%	12467	8.33%	7864	4.90%	3010	0.50%	28	0.03%	14649	0.14%
p _{Tdl}	2160	83.89%	10653	7.12%	6799	4.24%	2706	0.45%	27	0.03%	8907	0.09%
M _{dl}	2050	79.65%	6458	4.32%	5901	3.68%	1404	0.24%	19	0.02%	7518	0.07%
асор	1916	74.43%	6078	4.06%	5370	3.35%	1290	0.22%	11	0.01%	6637	0.06%
dp _{Tbal}	1871	72.70%	5949	3.98%	4965	3.09%	1267	0.21%	11	0.01%	927	0.01%
cosq _{missing}	1859	72.22%	5949	3.98%	4705	2.93%	1267	0.21%	11	0.01%	682	0.01%
M _{recoil}	1856	72.10%	3987	2.66%	2643	1.65%	882	0.15%	11	0.01%	453	0.00%
Likelihood	1564	60.77%	2401	1.60%	1734	1.08%	333	0.06%	0	0%	350	0.00%
eeh	signal		eevv		eeff		τΙνν		τlff		others	
No Cut	2701		145891		184568		596518		60970		~10M	
Selection	1924	71.23%	12771	8.75%	8076	4.38%	11996	2.01%	273	0.45%	75814	0.74%
p _{Tdl}	1874	69.39%	11470	7.86%	7175	3.89%	11213	1.88%	196	0.32%	51342	0.50%
M _{dl}	1729	64.01%	6649	4.56%	5243	2.84%	6142	1.03%	122	0.20%	31762	0.31%
асор	1614	59.75%	6339	4.35%	4790	2.60%	5516	0.92%	83	0.14%	25227	0.25%
dp _{Tbal}	1552	57.46%	6038	4.14%	4094	2.22%	5300	0.89%	73	0.12%	7195	0.07%
cosq _{missing}	1543	57.13%	6034	4.14%	3848	2.09%	5300	0.89%	72	0.12%	6489	0.06%
M _{recoil}	1523	56.39%	4242	2.91%	2294	1.24%	3997	0.67%	57	0.09%	4419	0.04%
Likelihood	1026	37.97%	1428	0.98%	840	0.46%	966	0.16%	2	0.00%	974	0.01%

Fitting Method

- Fitting function
 - signal -> Gaussian Peak with Exponential Tail (GPET)

$$\begin{cases} Ne^{-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^2} \left(\frac{x-\bar{x}}{\sigma} < k\right) \\ N\left\{be^{-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^2} + (1-b)e^{-k\frac{x-\bar{x}}{\sigma}}e^{\frac{b^2}{2}}\right\} \left(\frac{x-\bar{x}}{\sigma} \ge k\right) \end{cases}$$

- BG -> 3rd order polynomial
- Toy-MC study

- The sum of signal and BG distributions are fitted with the functions above.
- Make the toy-MC events according to the fitted functions.
- Fit the distribution again with the same function
 by floating height and mean of GPET.

Result (µµh)

- Statistical Errors :
 - cross section error 3.6%
 - mass error <u>37MeV</u>

- Statistical Errors :
 - cross section error 5.2%
 - mass error 147MeV
- Statistical errors for combination of μμh and eeh results.
 - cross section error 3.0%
 - mass error 36MeV

→ NEXT STEP

Semi Model Independent Analysis

There seems to be large number of remaining BG events with neutrino.

μμh	siġ	μμνν	τΙνν
After	1564	2401 .	333 ·
eeh	sig	eevv	τΙνν

eeh	signal		ee vv		eeff		τίνν		tiff		others	
No Cut	2701		145891		184568		596518		60970		~10M 🕈	
Selection	1924	71.23%	12771	8.75%	.8076	4.38%	11996	2.01%	273	0.45%	75814	0.74%
P _{Tdl}	. 1874	69.39%	11470	7.86%	7175	3.89%	11213	1.88%	196	0.32%	51342	0.50%
M _{dl}	1729	64.01%	6649	4.56%	5243	2.84%	6142	1.03%	122	0.20%	31762	0.31%
асор	1614	59.75%	6339	4.35%	4790	2.60%	5516	0.92%	83	0.14%	25227	0.25%
dp _{Tbal}	1552	57.46%	6038	4.14%	4094	2.22%	5300	0.89%	73	0.12%	7195	0.07%
cosq _{missing}	1543	57.13%	6034	4.14%	3848	2.09%	5300	0.89%	72	0.12%	6489	0.06%
M _{recoil}	1523	56.39%	4242	2.91%	2294	1.24%	3997	0.67%	57	0.09%	4419	0.04%
Likelihood	1026	37.97%	1428	0.98%	840	0.46%	966	0.16%	2	0.00%	974	0.01%

- Since contribution from Higgs invisible decays can be calibrated with data, visible energy selection is effective for reducing these BG.
- E_{vis} := E_{PFOs} E_{di-lepton} > 5 [GeV]
 Loose selection is applied to avoid bias in signal selection.

Efficiency Table (Semi-MI)

μµh	signal		μμνν		$\tau v v$		others	
No Cut	2574		149636	••	596518	+	~10M	
~M _{recoil}	1856	72.10%	39 ⁸ 7	2.66%	882	0.15%	<u>3</u> 107	0.03%
E _{vis}	1854	72.01%	926	0.62%	137	0.02%	3107 .	0.03%
Likelihood	·1811	70.37%	836	0.56%	103	0.02%	2837	0.03%
eeh	signal	•	eevv		τΙνν		others	
No Cut	2701		145891		596518		~10M	
~M _{recoil}	1523	56.39%	4242	2.91%	3997 .	0.67%	6770	0.06%
E _{vis}	1521	56.33%	1410	0.97%	1703 [`]	0.29%	6770	0.06%
Likelihood	1262	46.71%	719	0.49%	677	0.11%	2864	0.03%

Likelihood limit value is re-optimized for new visible energy selection.

Result (Semi-MI) µµh

MI

Statistical Error :

cross section error 3.6%

· · · ·

Signal+Background (MC) Signal+Background (MC) Signal+Background Signal+Background Signal+Background Signal+Background M_{recoil}

Statistical Error :

cross section error 3.0%

13

semi Ml

Result (Semi-MI) eeh

Events/0.2 [GeV] 0 08

20

MI

- Statistical Error :
 - cross section error 5.2%

□ Statistical Error :

120

cross section error 4.6%

130

150

semi Ml

Zh→e⁺e⁻X

 $L_{int} = 250 \text{ fb}^{-1}, P(e^{-}, e^{+}) = (-0.8, +0.3)$

Fitted signal

Fitted background

140

M_{recoil} [GeV]

Signal+Background (MC)

Fitted signal+Background

√s = 250 GeV

- Combination of mmh and eeh results :
 - cross section error 2.5%

Summary of Results

Cross section	mmh	eeh	Combined
MI	3.6%	5.2%	3.0%
semi-Ml	3.0%	4.6%	2.5%

Mass	mmh	eeh	Combined
MI	37MeV	147MeV	36MeV
semi-Ml	33MeV	123MeV	32MeV

Summary

- The recoil mass technique is important feature at the ILC to measure Higgs mass and cross section of Zh event.
- The measurement errors are ...
 - Cross section error : $\pm 3.0\%$
 - Mass error : ± 36MeV
- Visible energy selection is very effective to suppress BG.
 - Higgs invisible decays can be calibrated with data.
 - Cross section error : $\pm 2.5\%$ (E_{vis} > 5GeV)
 - Mass error : $\pm 32 MeV$ (E_{vis} > 45GeV for $\mu\mu h$, 55GeV for eeh)