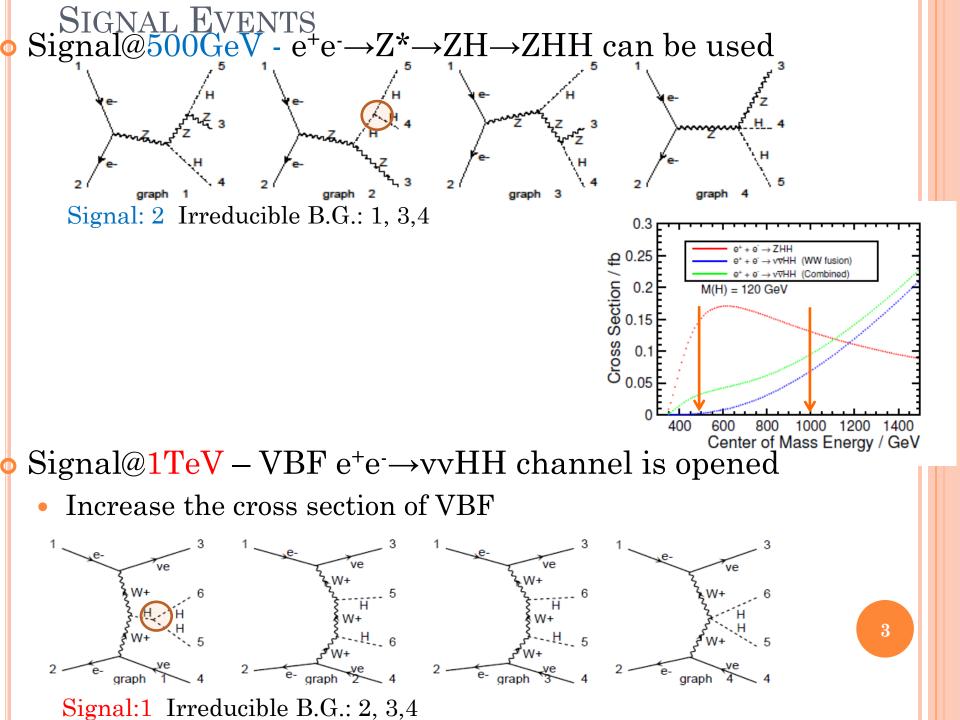


HIGGS SELF COUPLING ANALYSIS USING THE EVENTS CONTAINING $H \rightarrow WW^*$ DECAY

Masakazu Kurata, Tomohiko Tanabe The University of Tokyo Junping Tian, Keisuke Fujii KEK Taikan Suehara

Kyushu University

LCWS13, 11/11/2013-11/14/2013

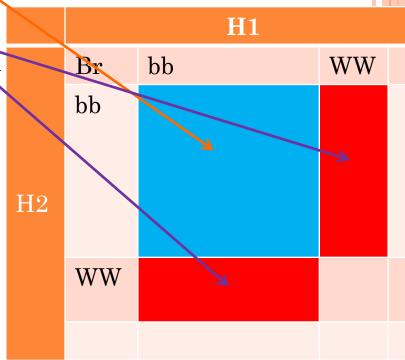

INTRODUCTION

- Measuring the Higgs self coupling is the key point to prove the electroweak symmetry breaking mechanism
 - Higgs potential in SM:

$$V = \lambda v^2 H^2 + \lambda v H^3 + \frac{1}{4} \lambda H^4$$

Mass term Trilinear coupling $SM: \lambda = \frac{m_H^2}{2v^2} \quad v \sim 246 GeV$ Quartic coupling \rightarrow difficult to measure

- Observing two Higgs bosons in the event is the only way to measure the self coupling
- Accurate test of the coupling may lead to the extended nature of Higgs sector → may go to new physics
- Our goal is to observe and measure the Higgs self coupling first


STATUS OF THIS ANALYSIS Golden channel: Z(bb)(bb)

- b-tagging can suppress the backgrounds
- Requirement of **H→WW*** decay
 - Same cross section as golden channel
 - Contribution of the total sensitivity
 - Need to reduce the backgrounds using kinematics of the events

But...

Disadvantage of the analysis

- Num. of b-tagging available is fewer than the golden channel
- @1TeV, the number of b-tagging available is 2 in VBF process
 →very similar to lepton+jets with lepton missing events
- Background cross section is increased at higher energy
 ttbar+X, which is difficult to reject from Higgs Strahlung process

• BACKGROUNDS AND SIMULATION • Backgrounds considered:

B.G. Process	Feature	Basic idea for rejection
ttbar ZWW	Huge number of events	Flavor tagging Kinematics topology Difference of the final states
ttbar + X	b-jet rich in the final states Similar final states	Kinematics topology
Triple boson• ZZ + H• ZZZ	Small cross section b-jet rich in the final states	Kinematics topology Difference of the final states

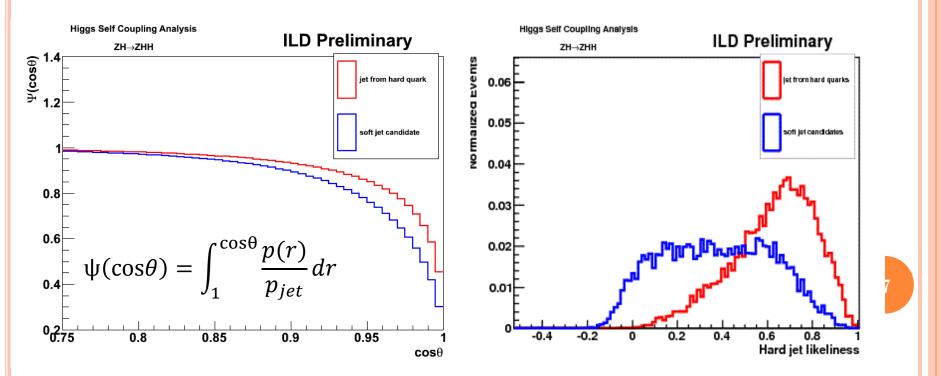
$S/B \sim 1/3000@500 \text{GeV}, 1/1000@1 \text{TeV}$				
Simulation				

	500GeV	1TeV
Polarization (e,p)	(-0.8,+0.3)	(-0.8,+0.2)
$m_{\rm H}({\rm GeV/c^2})$	125	125
simulator	Full with DBD	Fast

process	σ(fb)	σ(fb)
Signal(inclusive)	0.2	0.3
ttbar & ZWW	581.8	264.9
ttbar + QQ	0.83	5.74
ttbar + Z	0.98	7.81
ttbar + H	0.14	3.22
ZZ + H	0.77	0.54
ZZZ	1.83	1.62

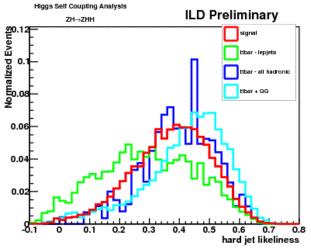
ANALYSIS STRATEGY FOR $HH \rightarrow (BB)(WW)$ • Classify the events with Z and W decays:

@500GeV	WW→(qq)(qq)	WW→(qq)(lv)	@1TeV	WW→(qq)(qq)	WW→(qq)(lv)
Z→bb	8jets	Lepton+6jets	Z→bb	8jets	Lepton+6jets
Z→cc	8jets	Lepton+6jets	Z→ll	Dilepton+6jets	N/A
Z→ll	Dilepton+6jets	Trilepton+4jets	vvHH	6jets (+missing)	N/A

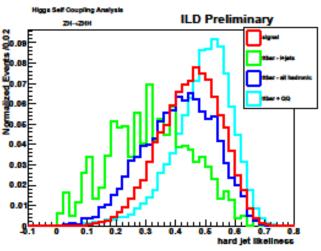

• Z decays into heavy flavor pair or lepton pair mainly

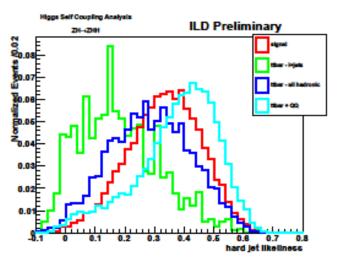
- Need flavor tagger or clean Z mass distribution to reject huge backgrounds
- Number of b jet candidates in the event and number of leptons can form exclusive samples
 - Number of b-tagging available: up to 4
 - Basically, 2 or 4 b-tagged jets events can be used
 - c-tagging is also available
 - Number of leptons: from 0 to 3


SOFT JET FINDING

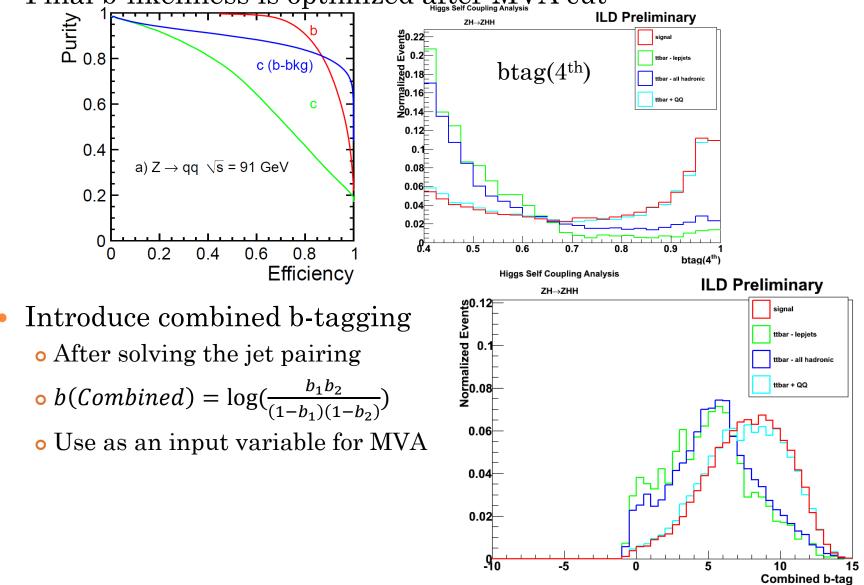

• Tracks in the gluon jets spread wider than those in quark jets(e.g. analyses on hadron collider)

- Traditional jet shape can be a good estimator
- Using Multivariate Analysis and estimating the hard jet likeliness for each jet




CHECK THE PERFORMANCE Check the jets with small hard jet likeliness – signal vs. ttbar For 6jets

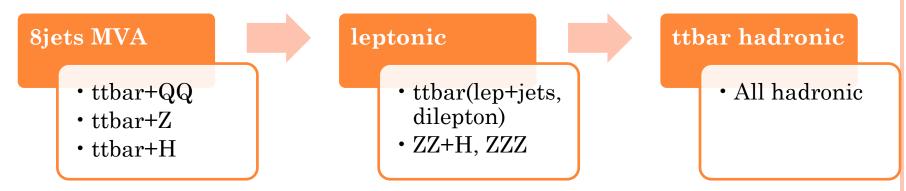
• For 8iets



8

FLAVOR TAGGING • Using LCFIPlus

- b candidate is set >0.4
- Final b-likeliness is optimized after MVA cut

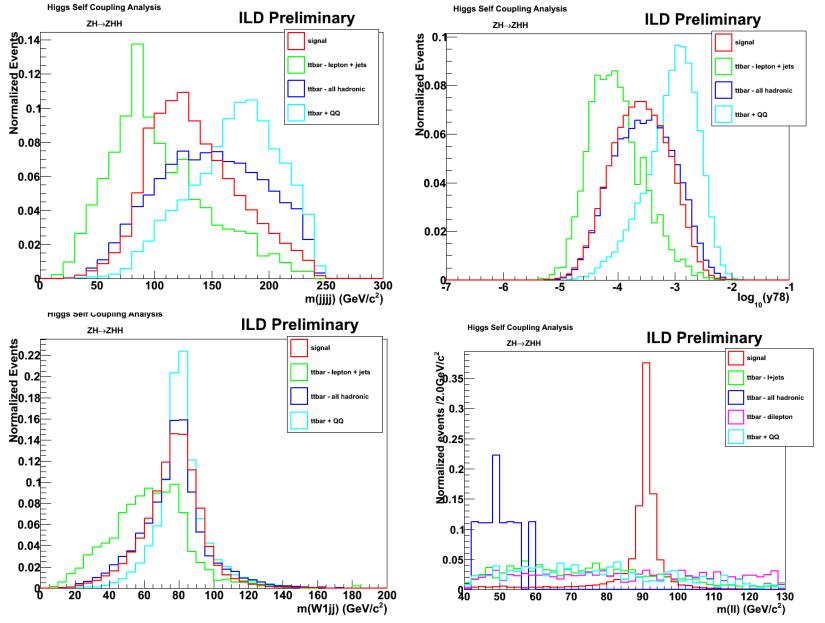

BACKGROUND REJECTION

• Multi Variate Analysis @500GeV

- Some cuts are implemented before MVA to tighten the input variable space jet energy, χ^2 , visible energy, (Z mass)
- Background rejection strategy : rejecting small backgrounds first and then rejecting main background

• Tighten the variable space when rejecting main backgrounds

• e.g. all hadronic case:

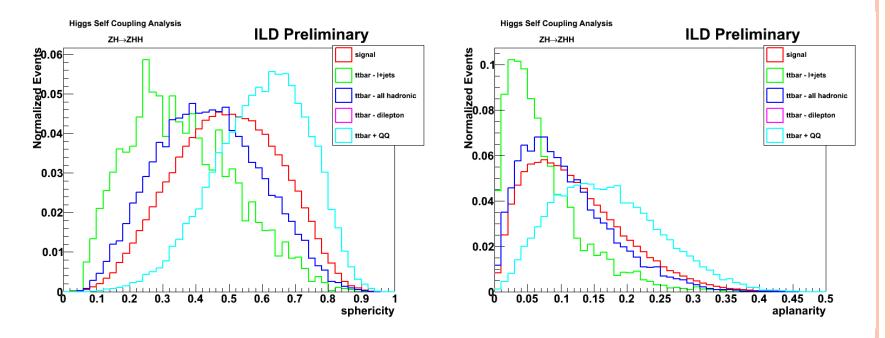


o Multi Variate Analysis @1TeV

- Some cuts are implemented before MVA to tighten the input variable space – jet energy, X², visible energy, (Z mass)
- Signal vs. all the backgrounds

Some kinematic variables used for MVA

Very powerful variable @500GeV: m(jjjj), m(lvjj)

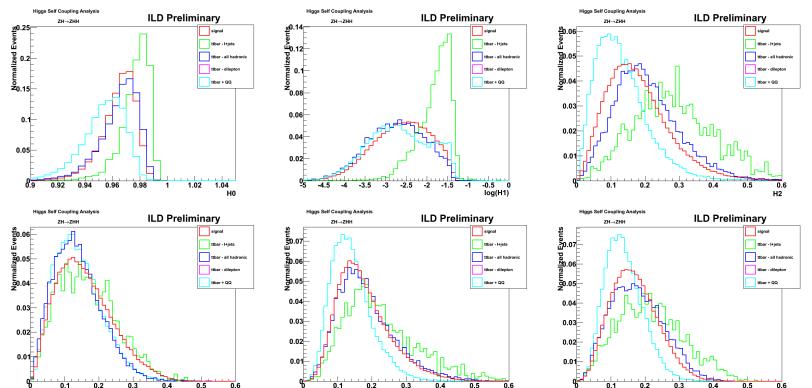


NON-SIMPLE VARIABLES USED FOR MVA • Sphericity and aplanarity

• Eigenvalue combinations of sphericity tensor:

 $S^{\alpha\beta} = \frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i} |\mathbf{p}_{i}|^{2}}, \quad \text{eigenvalues: } \lambda_{1} > \lambda_{2} > \lambda_{3}$

- Sphericity: $S = \frac{3}{2}(\lambda_2 + \lambda_3)$
- Aplanarity: $A = \frac{3}{2}\lambda_3$
- Indicates whether the event is 2-jets like or isotropic

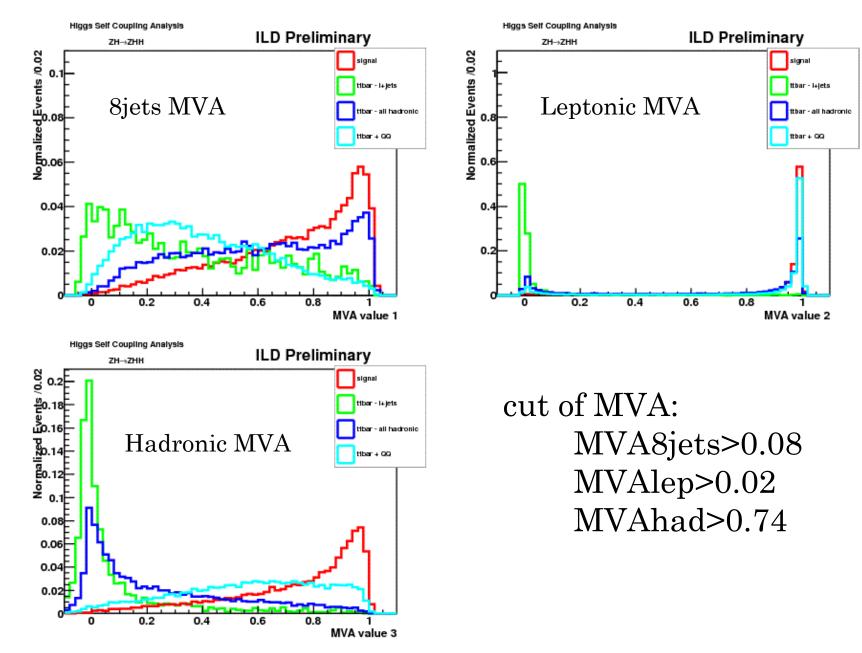

Non-simple variables used for MVA

• Fox-wolfram moments

$$H_l = \sum_{i,j} \frac{|\mathbf{p}_i| |\mathbf{p}_j|}{E_{\text{vis}}^2} P_l(\cos \theta_{ij}) ,$$

H3

- P₁ is Legendre polynomials
- Those moments characterize the structures of 2jets, 3jets, or isotropic events



Η4

13

H5

MVA OUTPUTS EXAMPLES(ALLHADRONIC@500GEV)

SENSITIVITY@500GeV o HH \rightarrow (bb)(WW)

- As mentioned, categorized with decay tipes of Z and W boson
 OZ→bb, cc or ll
- b-tagging strategy introduce looser b-tag category
 4-btag & 3-btag
- E_{CM}=500GeV, L=2ab-1
- Significance $\sim 1.91\sigma$

Modes	Z decay	b tag	Signal	Background	Significance
All hadronic	Z→bb	4btag 3btag	$15.20 \\ 19.43$	87.52 3099.49	1.50σ 0.35σ
	Z→cc		11.29	366.13	0.58σ
Lepton + jets	Z→bb Z→cc		$\begin{array}{c} 1.65 \\ 1.50 \end{array}$	17.62 819.61	0.38σ 0.05σ
Dilepton	Z→ll		2.24	8.44	0.69σ
Trilepton	Z→ll		1.05	2.60	0.55σ
Combined					1.91σ

$\begin{array}{c} SENSITIVITY@1TEV\\ \circ HH \rightarrow (bb)(WW) \end{array}$

- As mentioned, categorized with decay types of Z and W boson
 C→bb and II, VBF channel
- b-tagging strategy fully used the b-tagging for each category
- E_{CM}=1TeV, L=2ab-1
- Significance ~???σ

Modes	Z decay	Signal	Background	Significance
All hadronic	Z→bb	31.54	302.62	1.73σ?
Lepton + jets	Z→bb	1.16	9.24	0.36σ
Dilepton	Z→ll	1.03	14.30	0.26σ
6jets+ Missing	No Z, vvHH	??	??	>1.100
Combined				???σ

SUMMARY AND PLAN

- Higgs self coupling analysis using the events with H→WW* is ongoing.
 - Multi variate analysis to reject the backgrounds
 - Total sensitivity @500GeV is $\sim 1.91\sigma$
 - Total sensitivity @1TeV is ~???σ

o Plan:

- Optimize b-tagging strategy
 - Forming looser b-tag category
- Improvement of basic components for the analysis
 - Lepton ID
 - b-tagging
 - Jet energy correction
 - Jet clustering

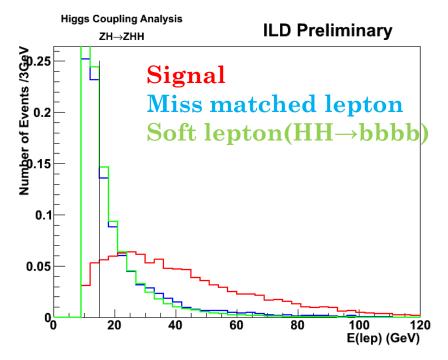
EVENT SELECTION

- Lepton selection
 - Lepton ID: The isolated lepton coming from the primary vertex

lepton	electron	muon
cut	0.65 <e p<1.25<br="">E(EM)/(E(EM)+E(HAD))>0.90 d0 <0.02 z0 <0.02 Cone Energy<61.10-0.28P</e>	E/p <min(0.5, 10.0="" e)<br="">E(EM)/(E(EM)+E(HAD))<0.45 d0 <0.02 z0 <0.02 Cone Energy<52.45-0.28P</min(0.5,>

Detection efficiency of Lepton ID ~ 98.4% for lep+jets signal events

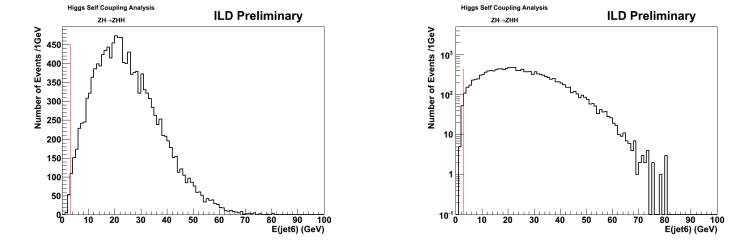
	Signal	ttbar – lep+jets	ttbar - allhad
Efficiency(%)	98.4	71.4	7.9

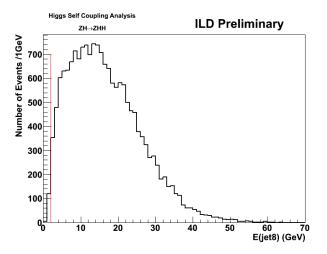

• For dilepton events ~ 83.8% of signal events

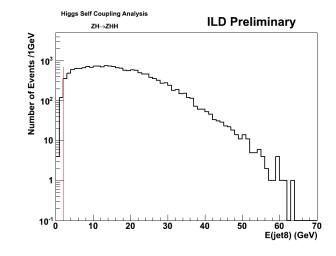
	Signal	ttbar – dilepton
Efficiency(%)	83.8	84.5

EVENT SELECTION

• Lepton selection


- E(lep)>15GeV is required to suppress soft leptons
- Dividing into 3 samples:
 - one lepton for lepton + jets
 - ${\color{black} \bullet}$ two leptons for dilepton ${\color{black} \to}$ opposite charge & same flavor
 - ${\sf o}$ three leptons for trilepton \rightarrow looking for the lepton pair from Z
 - tight lepton veto for all hadronic

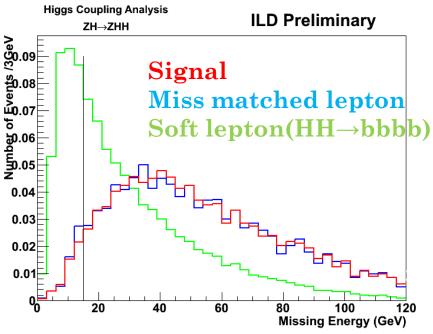

Lepton matching is required: $\cos\theta > 0.9$


EVENT SELECTION • jet selection

- requiring 4jets, 6 jets or 8 jets using LCFIPlus & Durham
- E(jet)>3GeV is required to care the lowest energy jet for 6 jets case

E(jet)>2GeV is required to care the lowest energy jet for 8 jets case

21


EVENT SELECTION

• Detection efficiency after the jet energy cut:

signal	4jets requirement	6jets requirement	8jets requirement
Efficiency(%)	99.0	99.4	99.6

• Missing momentum

- lepton + jets: P(Miss)>15GeV/c to suppress HH→bbbb events
- All hadronic & dilepton: P(Miss)<80 GeV/c required
- Trilepton: P(Miss)<150GeV/c to gain the acceptance

EVENT SELECTION & MAKING SAMPLES • preselection

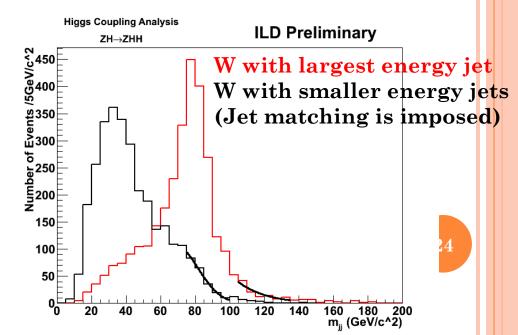
- lepton selection looking for isolated leptons
 - Electron and muon from primary vertex
 - Lepton energy cut E > 15 GeV to reject soft leptons
 - Divide into orthogonal samples based on the lepton number in the events
 - From 0 to 3
 - For 2 and 3 lepton samples, looking for a lepton pair from Z boson
- Jet selection jet clustering
 - Require proper number of jets for each sample -4, 6, or 8 jets
 - Minimum jet energy cut is required to reject trivial backgrounds

	4jets	6jets	8jets
Min. Energy(GeV)	1.0	3.0	2.0

- b likeliness>0.4 is required for b jet candidates
- Missing momentum

Category(Lep. Num.)	0	1	2	3
P(Miss) (GeV/c)	P<80	P>15	P<80	P<150

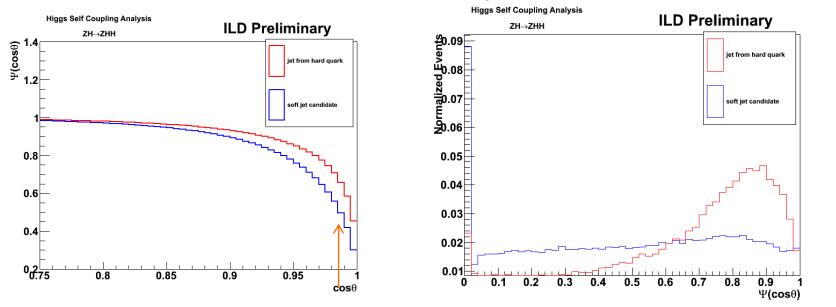
SOLVING THE COMBINATION OF JETS • Jets should be assigned to their parent particles correctly to obtain good kinematic variables


• Jet pairing is based on the X² technique

• b jet assignment to Higgs and Z boson:

$$\chi^{2} = \frac{(m_{1} - m_{Z})^{2}}{\sigma_{Z}^{2}} + \frac{(m_{2} - m_{H})^{2}}{\sigma_{H}^{2}}$$

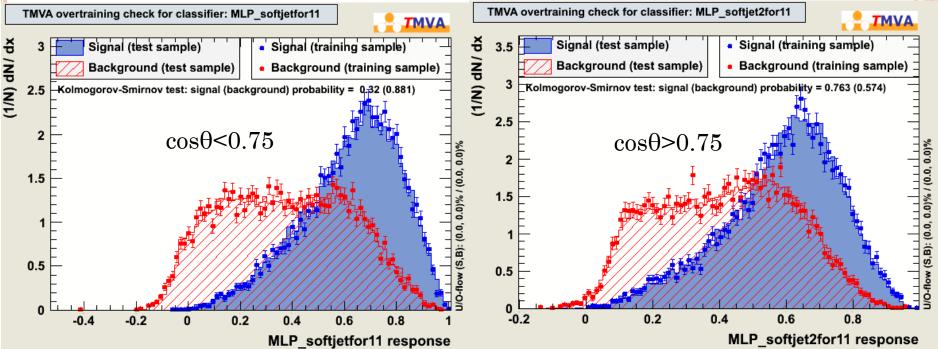
- Light flavor jet assignment to 2 W bosons:
 - Mass constraint is imposed only to the W boson with largest energy jets
 - Breit-Wigner is assumed
 - for W mass shape


•
$$\chi^2 = -2 \text{Log}(\text{BW}(m_{W1}|m_W, \Gamma_W))$$

SOFT JET FINDING

- Soft jet finding may be available for the events with extra jets not coming from hard process quarks
 - e.g. 8 jets requirement to ttbar hadronic events(6 jets from hard quarks)
- Traditional jet shape indicates the same tendency as hadron collider analysis

$$\psi(\cos\theta) = \int_{1}^{\cos\theta} \frac{p(r)}{p_{jet}} dr$$


25

SOFT JET FINDING

- Hard jet likeliness is introduced
 - Using MVA to form it
 - Analysis samples are divided into 2 based on the angle with the nearest jet

 \rightarrow large shared area for both jets deteriorate the traditional jet shape

 Use the likeliness for the input of background rejection MVA or simple cut of backgrounds

REDUCTION TABLE

All hadronic

• Final b-tagging: btag(3)>0.92 && btag(4)>0.44

• HH \rightarrow bbbb contamination is 5.41 events

process	signal	ttbar	tt + QQ	tt+Z	tt + H	ZZ + H	ZZZ
expected	354.00	1.16×10^{6}	1660.00	3307.00	280.00	1540.00	3660.00
preselection	49.47	2462.09	79.11	76.25	38.32	87.22	70.72
Jet energy	47.92	1970.58	77.62	74.98	37.96	72.88	57.28
X2	44.32	1353.38	64.57	62.41	34.02	61.60	48.16
Visible energy	44.23	1326.19	64.31	62.00	33.92	61.18	47.90
NN for 8 jets	36.51	1011.92	36.37	34.37	16.38	51.59	47.90
NN for ttbar	20.53 (9.85)	302.59	26.44	25.17	13.07	21.71	9.00
b-tagging	14.92 (5.41)	87.54	17.54	16.42	9.13	16.10	6.03