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History of Superconductivity 1
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Superconductive materials

T . . . oy . .
s SC materials only in special conditions like high pressure, amorphous, etc.

SR

Cu;  Materials for which SC phase has not been found yet.

Compound materials have also SC phase.mp High-temperature superconductivity materials.



Non superconductive materials

* Even if they are metal, alkaline metals and
good metals with high conductivity are non SC
materials.

* Even if they are metal, transition elements
and Rare Earth Elements (REE) with
magnetization are non SC materials.



History of Superconductivity 2 (1/2)

1908: H. K. Onnes and Van Der Waals liquefied He for the first
time in Leiden.

1911: H. K. Onnes discovered superconductivity with Hg at 4.1 K
in Leiden.

1914: H. K. Onnes discovered persistent current in loop
superconductor.

1933: F. W. Meissner discovered Meissner effect.

1935: F. W. London and H. London established London equations
which explained Meissner effect.

1935 — 37: L. V. Schvinikov, De Haas and Casimir-Jonker
discovered two Hc’s. Later this is called Hcl and Hc2 of type-ll
superconductor.



History of Superconductivity 2 (2/2)

1950: V. L. Ginzburg and L. D. Landau established GL theory,
introducing thermo-dynamical states in superconductor.

1952: A. Abrikosov predicted Type-Il superconductor.
1953: Pippard introduced Pippard coherent length.

1953: SC phase of Nb3Sn was found with Tc = 17 K (at rather
high temperature).

1957: ). Bardeen, L. N. Cooper, and J. R. Schrieffer established
BCS theory (microscopic understanding of superconductivity).

1961: Nb3Sn was confirmed to be Type-Il superconductor.
1980’s: High-temperature SC materials were found.



Superconductivity in DC

Persistent DC current

Decay time of DC superconductive current > 10° years

The perfect conductivity is the first hallmark of superconductivity.
But the superconductivity is not identical to the perfect conductivity.


http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Meissner_effect_p1390048.jpg

Perfect conductivity

Tc = Critical temperature

(a)
H=0 H->0
T<T c T<T c
(b)
A A
H >0 H>0
T>T ¢ T<T¢

Figure 4.3: (a) Screening of external magnetic field by a pexfect conductor. (b}

Flux trapping in a perfect conductor.



Superconductivity

Tc = Critical temperature

(a)
H =
T<T ¢
(b)
L AL
H>0
T>Te

ayen

H >0

T<T ¢ T<T ¢

B=pH+p,M=0
Meissner effect
Perfect diamagnetism

H ->0
T<Tc



Superconductivity

Superconductivity is the thermodynamic state.
If you give the thermodynamic parameters: T and H, the state is defined exactly.
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Thermodynamic properties

2=
AC
< G
- 7 1
Entropy = | S A Ca Specific Heat
l | | | L 1 | l | 1

0 T 1 0 T 1

> %

(@) )

Free Energy

() (@)

FIGURE 2-3

Comparison of thermodynamic quantities in superconducting and normal states.
U.,(0) is chosen as the zero of ordinates in (c) and (d). Because the transition is of
second order, the quantities S, U, and F are continuous at 7,. Moreover, the slope of
F joins continuously to that of F, at T,, since dF/8T = -S8.



Type-l and Type-ll superconductors

Type- . Type-ll
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External magnetic field

Empirical expression of Hc(T)

It was found empirically that Hc(T) is quite
well approximated by a parabolic law.

H{T)

H(T) ~ H.0)[1 - (1/Te)"]

Superconducting

Temperature



Hc(T) measurements of Nb (Type-Il)
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Hc(T) measurement of Nb (Type-lI)

V1

V2

X-sec

S
Coil
N turns

Coil
-N turns

Sample

- | -

External Magnetic Field
H (t) = HO x t (increase constantly)

Definition (MKS)
B= woH+uo M
O=NxBxS



Hc(T) measurement of Nb (Type-II)

V=V1+V2

Vi= -(d¢ /dt)=-(dnBS/dt)=-NS(dB/ dt)

-NS(dpoH/dt)=-pno NS (dH / dt)

V2= (d¢ /dt)=(d NBS/dt)=NS (dB/ dt)
=NS{d{poH+poM}/dt}
= no NS (dH / dt) + po NS (dM / dt)

V=V1+V2=-pno NS (dH / dt) + po NS (dH / dt) + po NS (dM / dt)
= no NS (dM / dt)

fV dt = po NS [(dM / dt) dt = po NS ( M(t) — M(0) )
= puo NS M(t) ( because M(0)=0)



Hc(T) measurement of Nb (Type-Il)

Pickup coil parameters

N =250 turns

S=4.65mmx 2.8 mm=13.02 x 10**-6 m**2
NS =250 x 13.02 x 10**-6 = 3.23 x 10**-3 m**2

External B parameters :
External Coil Current 1 A <& B =653.7 gauss
= 0.06537 Wb/m**2
Ramping rate of B: 0.1 A/ sec <& 6.537 x 10**-3 Wb/m**2 / sec
dB /dt =6.537 x 10**-3 Wb/m**2 / sec

V1 =- NS (dB / dt) = 3.23 x 10**-3 x 6.537 x 10**-3
=21 x 10**-6 Volt

Output voltage from the pickup coil is about 20 micro-volt.



Hc(T) measurement if Type-|

M Type | super-conductor
oc [V dt
0
Hc External H=HO x t ~ time
\'

_— Two areas should cancel out.

P

External H=HO x t ~ time




Hc(T) measurement of Nb (Type-Il)

oc [V dt

C
A Type Il super-conductor

Definition
1 2 . 1 HC2
~HHC = Ey.[o MdH

Hcl Hc2
External H=HO x t ~ time

Two areas should cancel out.

-/

/

External H=HO x t ~ time



Hc(T) measurement of Nb (Type-Il)

Hcl, Hc, He2 (G)
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London equations

Proposed a 2-fluid model with a normal fluid and superfluid components

n. : density of the superfluid component of velocity v,
n, : density of the normal component of velocity v

ov _
ma =—el’ superelectrons are accelerated by £
J =—en U
aJ. ne
= E superelectrons
ot m

J =oF normal electrons



London equations

2
o/, _ne 5
ot m
Maxwell Vxp=-2
ot
_ofm g 7 B0 =
81‘Lnse J ne
F&H London postulated:|——V B=0
ne

2

V x J_+ B = Constant



London equations

combine with VxB= ]

2
vip .t p_g
m

B(x) = B exp [—x/ﬂ,L]

1
m 2
Hn.e

The magnetic field, and the current, decay
exponentially over a distance A (a few 10s of nm)




Penetration depth in thin film

A 7]

Thickness a < penetration depth b L
Very thin films
>y >y
-a a -a a

Thickness a > penetration depth 1A |13

A
Very thick films L




London equations
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London equations

E .

London Equation: A’V xJ =-—=-H
Ky
VxA=H
choose Ved =0, A =0 onsample surface (London gauge)
. 1 -
J, = —?A

Note: Local relationship between .. and A4



Pippard coherent length

Pippard introduced the concept of coherent length for the first time.

Analogy to the chambers’s nonlocal generation of Ohm'’s law :  J(r) = ¢E(r}

J(r) =

. "] -R/E
3o JR[R_ _P“E;‘ )l dr’! whereR=r—-r’

throughout a volume of radius | (mean free path) about r

— gt —A
Pippard extended J, = neelv,) = r::c..'t -2

3 JR[R - A(r')] o~ RIE gp! whereR=r—-r’

To Jg(r) = —-
) 4mE, Ae R4
fiv 1 1 1
Coherent length ED == aﬁ' E = E + —
[

If choosing a = 0.15, Pippard could fit the experimental data on both tin and aluminum.

This form was later confirmed by BCS theory.



Ginzburg-Landau theory

Ginzburg-Landau theory is a particular case of
Landau’s theory of second order phase transition

Formulated in 1950, before BCS
Masterpiece of physical intuition
Grounded in thermodynamics

Even after BCS it still is very fruitful in analyzing the
behavior of superconductors and is still one of the
most widely used theory of superconductivity



Ginzburg-Landau theory

« Theory of second order phase transition is based on
an order parameter which is zero above the transition
temperature and non-zero below

* For superconductors, GL use a complex order
parameter W(r) such that |\V(r)|? represents the
density of superelectrons

« The Ginzburg-Landau theory is valid close to 7



Ginzburg-Landau theory

« Assume that W(r) is small and varies slowly in
space

« Expand the free energy in powers of ¥(r) and its
derivative

2

(A A

§
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37T

f=tovalyf+ Ll +—




Ginzburg-Landau theory

f=to=elyl +§IW|4

S=700 S=70
T>Tc T<Tc
o >0 a <0
[ ==
) p
| ol /)]
g S ’
Near T, we must have >0 a(t)=a'(t-1)
2 a2 5
At the minimum  f-/,=-—5=-——=y[ and H, <(1-1)

87 28



Ginzburg-Landau theory

London penetration depth: length over which magnetic field decay
1/2

REVARE
AL(T)_Lzeza'J 17 -T

Coherence length: scale of spatial variation of the order parameter
(superconducting electron density)

fi

O ——

| 2m* (T
The critical field is directly related to those 2 parameters
&,
H.(T)=
N2 E(1) A,(T)
do = 2—’2 = 2.07 x 10~ Wb

The ratio of the two characteristic lengths defines the GL parameter: & = £



Ginzburg-Landau theory

D)
1YI? = n, h(x)

Superconducting Normal

e— (1) ——+

1
o= g[Hfg ~H’A]

2
Pg A . Energy that can be gained by letting the fields penetrate
T

HE

9

8T

Energy lost by "damaging" superconductor




Ginzburg-Landau theory

Interface is stable if >0
If £>>A1 c>0
Superconducting up to H_ where superconductivity is destroyed globally

If 2 >>5 o<0 forH” >Hf%

Advantageous to create small areas of normal state with large area to volume ratio
— quantized fluxoids

More exact calculation (from Ginzburg-Landau):
A 1

K=— < — - Type |
g

A
K=—>
g

S-S

- Type |l



Ginzburg-Landau theory

K<ﬁ

—4nM

!
)
H

_'[
cl 3 H,y
FIGURE 5-2
Comparison of magnetization curves for three superconductors with the same value
of thermodynamic critical field H., but different values of k. For x < 1/,/2, the
superconductor is of type I and exhibits a first-order transition at H,. For x > 1/\/5,
the superconductor is type II and shows second-order transitions at H,, and H_, (for
clarity, marked only for the highest x case). In all cases, the area under the curve is

the condensation energy H?/8x.

/ Type 11

P Type |

N

FIGURE 1-5

Comparison of flux penetration behavior of type I and type II superconductors with
the same thermodynamic critical field H.. H_, = \//2 kH_. The ratio of B/H_, from
this plot also gives the approximate variation of R/R,, where R is the electrical
resistance for the case of negligible pinning, and R, is the normal-state resistance.



Ginzburg-Landau theory

Vortex lines in
Pb gsln o,

At the center of each vortex is a
normal region of flux h/2e

The energy is low to make vortex lines which have the boundary of SC / NC.



Ginzburg-Landau theory

Even though it is more energetically favorable for a type | superconductor
to revert to the normal state at H_, the surface energy is still positive up to
a superheating field H,>H_ — metastable superheating region in which
the material may remain superconducting for short times.

HA

Type | H, Thermodynamic critical field

I

H, 7, Superheating critical field

Ji

surface
superconductivity

Schubnikov
phase

Type I H, Thermodynamic critical field
complete
o2 = »\/5 K Hc Meispsn:-r effect
B =0 e
H’ oot
Hcl = Figure 3-1
H Phase diagram for a long cylinder of a Type II super-

c?2

conductor

I

L(lnlc +.008)H, (forx>1)
2K



Ginzburg-Landau theory

Ginsburg-Landau:
09H
H ~
sh \/;
~ 12 H, forx ~1
~ 0.75 H, for xk >>1

for kx<<1

The exact nature of the rf critical
field of superconductors is still
an open question

T rr 11T T 1T°F
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Figure 5.9: Phase diagram showing the Meissner, normal, mixed, and super-
heated states. The normalized critical fields Hey, He, Hez and Hg, are shown
as functions of the GL parameter. The range of data for the rf critical field of
lead is also shown.



Ginzburg-Landau theory

Material parameter for various superconductors

Superconductor 2oz (0) (nm) Zo (nm) K 24(0)/kT. TA(K)
Al 16 1500 0.011 3.40 1.18
In 25 400 0.062 3.50 3.3
Sn 28 300 0.093 3.55 3.7
Pb 28 110 0.255 4.10 7.2
Nb 32 39 0.82 3.5-3.85 8.95-9.2
Ta 35 93 0.38 3.55 4.46
Nb;Sn 50 6 8.3 4.4 18
NbN 50 6 8.3 4.3 <17
Yba,Cuz0, 140 1.5 93 4.5 90




BCS theory

« What needed to be explained and what were the
clues?

— Energy gap (exponential dependence of specific heat)

— |sotope effect (the lattice is involved)

0.585 e

0580 - § w4 H -
— Meissner effect oss b N\, J
o 0570 |- , .

0.565

0560 L L ' 1
205 206 207 208 2.09 210

IgM—

Figure 26: The critical temperature of various tin isotopes.



BCS theory

Assumption: Phonon-mediated attraction between
electron of equal and opposite momenta located
within 2@, of Fermi surface

Moving electron distorts lattice and leaves behinda | “ 1 4 4%

—@ o “‘O
trail of positive charge that attracts another electron ? Qj L ‘7} |
moving in opposite direction —0—90—0—0—9
Fermi ground state is unstable i P

/ Fermi sphere

Electron pairs can form bound / 5 A Cooper pair

(b’lﬂ.-ﬁ@)

states of lower energy - J Py st.
X P2 pin

Bose condensation of overlapping
COOp er p al rs | n t oac Oh er ent Figure 20: A pair of electrons of opposite momenta added to the full Fermi sphere.
Superconducting state




BCS theory

@ metal ion

O——AMAMANA—O
Cooper pair

4 single
electron

Figure 22: Cooper pairs and single electrons in the crystal lattice of a superconductor. (After
Essmann and Trauble [12]).

Fermi sphere, p2/2m=Eg
2 Egt huwp

possible Cooper pairs:
(p.-p).(P\-P")
(B=D%); 000

Figure 23: Various Cooper pairs (3, —p), (7', —7"), (", =p"),- .. in momentum space.

The size of the Cooper pairs is much larger than their spacing

They form a coherent state



BCS theory

« The BCS model is an extremely simplified model of reality
— The Coulomb interaction between single electrons is ignored
— Only the term representing the scattering of pairs is retained

— The interaction term is assumed to be constant over a thin
layer at the Fermi surface and O everywhere else

— The Fermi surface is assumed to be spherical

« Nevertheless, the BCS results (which include only a very few
adjustable parameters) are amazingly close to the real world



BCS theory

At finite temperature:

Implicit equation for the temperature dependence of the gap:

251/2
jff% tanh| (&% + A*)"? /24T | y
£
251/2
Vp<0> (&7 +A%)
A(T) A
1 I | | |
A{0) = 1.76kgT,
/ 10 |- o= —a-ggo- o $%20, -
— TSro_ &
o O-B = \\0 =
A~ 3.2kBT0{1 . (T/To)] 1/2 z BCS the‘ory/-“\ \\i.‘
= 06 - N, T
[ A
3 04 o in -
a 5n %A
> 0.2 « Pb \\-
1 T/T, 0 | 1 1 I |
Figure 4-4 0 0.2 0.4 06 0.8 1.0
Variation of the order parameter A with temperature in the BCS T/Te

approximation,



BCS theory

Specific heat

A T
C = exp|—-——| for I<—=<
“ P kT 10

3.0 il
1.0 -
Ces
=22:9.17 exp (15 T./T)
Y'c
0.3 i
Ces
yTe
Ol -l
003 o vanadium &
o tin
0.01 1 | |
1.0 2.0 3.0 4.0 5.0

T/T

Fig. 22. Reduced electronic specific heat in superconducting vanadium and tin.
[From Biondi et al., (150).]



BCS theory

H,. istreated as a small perturbation
H,f << H,
There is, at present, no model for superconducting

surface resistance at high rf field
R

) 7
; OCJ'R[R All(@.R,T)e
R4

dr similar to Pippard's model

J (k) = - ﬁK(k)A(k)

K0)=0: Meissner effect



BCS theory

Represented accurately by 4 ~

2000

1200

1000

800

600 . THEORY
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200

L0 1.5 20 25 30 35 40 45 50

Fig. 30. Temperature dependence of d2/dy for tin obtained by Schawlow and Devlin (207)
compared with the theoretical curve obtained from the BCS theory.



BCS theory / Surface resistance

Temperature dependence

f4

(1-2Y"

—close to 7, : dominated by change in ()

—for 7' < % dominated by density of excited states ~ e'%T

R~ Ay exp [—A]
1 kI’

Frequency dependence

»® is a good approximation



BCS theory / Surface resistance
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[After Biondi and Garfunkel (15).]



BCS theory / Surface resistance

103

Niobium —

Rs (Ohms)

1.0 2.0 3.0 2.0 5.0
T T

Figure 4.5: Theoretical surface resistance at 1.5 GHz of lead, niobium and

Nb3Sn as calculated from program [94]. The values given in Table 4.1 were
used for the material parameters.



BCS theory / Surface resistance
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Fig. 2. Temperature dependence of surface resistance of niobium at
3.7 GHz measured in the TE,,, mode at H ~10G. The values
computed with the BCS theory used the following material para-
meters:
T=925 K i (T=0,1=00)=3204;
A(0)/kT=1.85; Ep(T=0,I=00)=620A; I=1000Aor 80A.
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Fig. 5. The surface resistance of Nb at 42K as a function of
frequency [62,63]. Whereas the isotropic BCS surface resistance
(- -+ ) resulted in Rocw"® around 1 GHz, the measurements fit
better to @” (- - -). The solid curve, which fits the data over the
entire range, is a calculation based on the smearing of the BCS
density-of-states singularity by the energy gap anisotropy in the
presence of impurity scattering [61]. The authors thank G. Miiller
for providing this figure.



BCS theory / Surface resistance

Temperature dependence

—closeto 7 :
t4
dominated by change in (/) —7 - | ‘ |
(1 _ rz) o) Niobium —
Lead ----
107 Nb,Sn ---. -
T 3
—for 7' <—=: TR
2 .0
. . . 0y § 10
dominated by density of excited states ~e /X7 L
10
A A
RS ~?a)26xp _ﬁ 10
10°%5 20 3.0 T80
TIT
Freq UenCy dependence Figure 4.5: Theoretical surface resistance at 1.5 GHz of lead, niobium and
) Nb3Sn as calculated from program [94]. The values given in Table 4.1 were

) |S a g OOd apprOXImatlon used for the material parameters.

A reasonable formula for the BCS surface resistance of niobium is

2
GHz T
Ryes =9x107 %)exp (—1.83?6]



BCS theory / Surface resistance

« The surface resistance of superconductors depends on
the frequency, the temperature, and a few material
parameters

— Transition temperature
— Energy gap

— Coherence length

— Penetration depth

— Mean free path

« A good approximation for T<TJ/2 and w<<A/h is

R ~ éa)z exp [— A] +R..
T kT



BCS theory / Surface resistance

R~ %0)2 exXp [— A} + R

kT
In the dirty limit | <« ‘fo RBCS oc 712
Inthe clean limit /> & R, ocl

Rres:
Residual surface resistance
No clear temperature dependence

No clear frequency dependence

Depends on trapped flux, impurities, grain boundaries, ...



BCS theory / Surface resistance
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BCS theory / Surface resistance

Surface Resistance - Nb - 1500 MHz
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BCS theory / Surface resistance

Normal Conductors

— Skin depth proportional to w12

— Surface resistance proportional to w12 — 23

— Surface resistance independent of temperature (at low T)
— For Cu at 300K and 1 GHz, R;=8.3 mQ

Superconductors
— Penetration depth independent of w
— Surface resistance proportional to w?
— Surface resistance strongly dependent of temperature
— ForNb at2 Kand 1 GHz, R=7 nQ



