

What HL-LHC can (not) do (based on examples with CMS)?

Serguei GANJOUR CEA-Saclay/IRFU, Gif-sur-Yvette, France

> ILC Club, Saclay December 12, 2013

Last year discovery of a new boson at the LHC opened the new horizons at the Energy Frontiers

☞ The boson that we found looks rather "standard" scalar at first sight ☞ Unraveling its nature is the major effort

> A Higgs Boson→ The Higgs Boson→ The SM Higgs Boson

- ☞ The SM begins to unravel when probed beyond the range of current accelerators
- ☞ No hint of New Physics so far: indirect searches become pivotal!
	- ➠ precision coupling measurement

$$
\frac{\Delta k/k}{\Delta k/k}\frac{1/M_A^2}{\sim} \ln(1)\% \Rightarrow M_A\sim\!\!1\text{-}1.5(3\text{-}4)\text{ TeV}
$$

LHC approved running to deliver 300 fb⁻¹ by 2021 with 20x Higgs boson production so far

্ষ Post LS3 operation at 5×10^{34} $\rm cm^{-2}\,s^{-1}$

- ➠ 25 ns bunch spacing
- ann $\,$ 3000 $\, {\rm fb}^{-1}$ over 10 years
- **140 events per bunch crossing**
- D^{es} Major upgrades required on the LHC (replace more than 1.2 km):
	- **new IR-quads** $Nb₃Sn$ (inner triplets)
	- **WE new 11 T** $Nb₃Sn$ (short) dipoles
	- ➠ collimation upgrade
	- ➠ cryogenics upgrade
	- ➠ crab cavities

LHC revamp is resuming in 2015, with \sqrt{s} unlikely exceeding 13 TeV

Projections done assuming 14 TeV, little difference for analysis performance

CMS preliminary 2012

29 distinct vertices have been reconstructed corresponding to 29 distinct collisions within a single crossing of the LHC beam

Leptons and MET are almost insensitive to pileup at current lumi

- ☞ Experiment was designed for mean 20 events per bunch-crossing
- ☞ continue to do an excellent job with 30 events
- ☞ handle 70 events of pileup

But 140 events of pileup will be a challenge

■ Detector upgrade needed

- ➠ to withstand radiation damage and pileup
- ➠ to maintain or enhance the current physics performance
- ☞ CMS will undergo a series of detector and trigger upgrades
	- ➠ several subdetectors will be improved or replaced
	- **IIIIIII** trigger is a key component
		- \rightarrow mandated by need to study the Higgs boson
		- \rightarrow thresholds not too dissimilar to today

[CMS-NOTE-13-002, arXiv:1307.7135]

Current and Phase 1 trigger efficiency: upgraded trigger system available for data taking in 2016

☞ What have we learned?

- ➠ the experiment is working remarkably
	- → operations, detector performance and simulation
- ➠ the SM is in great shape
	- \rightarrow N(N)LO calculations match data very well

■ HL-LHC Physics Goal in Higgs Sector

- ➠ rare decays & couplings
- ➠ spin and CP studies
- ➠ BSM Higgs boson searches
- **IND** Higgs boson pair production

☞ HL-LHC is a real Higgs factory

- ➠ a couple of Higgs events produced per sec
- How compare to e^+e^- colliders:
	- → less than 10 events per hour at $L = 10^{34}$ cm⁻² s⁻¹
- Most of the exclusive final states are accessible, including in particular very rare ones
	- \blacksquare 20K H \rightarrow ZZ \rightarrow 4
	- \blacksquare 30K H → $\mu\mu$
	- \implies 50 H \rightarrow J/ $\psi\gamma$ (couplings to c-quark)

Enable to probe redundantly most of the coupling factors

Projection Approach:

- ☞ Scale results of current analyses
- ☞ Two scenarios considered:
	- ➠ Scenario 1 (conservative): same experimental and theory systematic uncertainties as today
	- ➠ Scenario 2 (ambitious): experimental syst. scaled by $1/\sqrt{L}$, theory syst. halved
- ☞ Assume detector upgrade keeps current performance
- ☞ Supported by full simulation studies

use more pessimistic performance for current studies

Events/1.0 GeV

 $H \rightarrow ZZ \rightarrow 4\mu$

- ☞ Worth full study with DELPHES
- ☞ Considered coverage extension from $|\eta| < 2.4$ to $|\eta| < 4 \rightarrow$ in Phase II detector upgrades
	- \blacksquare sizable acceptance increases 45%

 $\rm |H\rightarrow 2\mu$

- ☞ Rescale of current analysis
- ☞ Allows direct study of coupling to two different leptons
	- ➠ tests lepton flavor violation
- **≋** $3000 fb $^{-1}$ at 14TeV offers new$ possibilities
	- ➠ signal to background marginal
	- ➠ but a measurement is possible

Integrated Luminosity [fb⁻¹]

 \mathbb{R} First step to assess compatibility to SM

- \textbf{E} perform single parameter fit, signal strength $\mu = \sigma/\sigma_{\rm SM}$
- \square are group decay channels together and express results as σ_u/μ

Not always straightforward to interpret: worth separation of production modes

☞ Attach a modifier to the SM prediction

$$
\sigma \mathcal{B}(ii\rightarrow H\rightarrow ff) \sim \frac{\Gamma_{ii}\Gamma_{ff}}{\Gamma_{tot}} = \sigma_{SM} \cdot \mathcal{B}_{SM} \frac{k_i^2 \cdot k_f^2}{k_H^2}
$$

Compatibility with the SM Higgs Boson Couplings

The generic five-parameter model not effective loop couplings (the SM structure is assumed for loop-induced couplings)

Not effective loop couplings as function of the mass

New particles can modify the loop-mediated couplings and contribute to the total width

 $\Gamma_{tot} = \Sigma \, \Gamma_{i(SM)} + \Gamma_{BSM}$

To significant deviations from the SM Higgs boson are found so far

Extracting Higgs couplings requires assumptions at LHC

- ાજી Total width $\Gamma_{\rm H} \sim k_H^2$ is not measurable
	- ➠ not possible to measure directly a production cross section as at $\mathrm{a}\ e^+\mathrm{e}^ \mathrm{collider}$
- ☞ Follow recommendations and fit models described in Yellow Report 3 [arXiv:1307.1347]
	- $\;\;\mathrel{\mathop{\rm ms}\nolimits}$ assumed $k_H = \mathop{\scriptstyle\mathop{\Sigma}}\nolimits k_iBR_i,$ only for i in SM
		- \rightarrow total width controlled by $H \rightarrow bb$
		- \rightarrow H \rightarrow cc is a 5% unaccessible contribution (assumed to scale with bb)
		- \rightarrow no contributions from BSM
- \mathbb{R} Global fits targeting the k factors
	- ➠ do not resolve loops, effective coupling instead $(k_{\gamma}, k_q$ and $k_{Z\gamma})$

Results reported in terms of 68% uncertainties $(-2\Delta \ln L=1)$ on k

☞ Assume no new undetectable modes

- ➠ in an ambitious scenario, ultimate precision is about 2% for couplings involved in the main decay modes
- ☞ Results are more "stable" if total width absorbed by a reference scale factor
	- ➠ look at ratios of couplings for direct comparison

HL-LHC can lead to an accuracy of about $5-8\%$ for many coupling constants in scenario conservatively covering the range of future performances

[Scenario 2, Scenario 1]

CMS Projection

Current results are still limited by statistical uncertainty

- ☞ Two major questions arise for the future prospectives:
	- ➠ what are the most relevant systematic uncertainties?
	- ➠ what role do the theoretical uncertainties play?
- **☞ Theoretical uncertainties affects the ulti**mate precision achievable by experiment

☞ Reducing them it is worth the effort!

CMS Projection

HL-LHC can ultimately reach an accuracy of below 5% for many coupling constants

[HIG-13-018]

- ☞ Current direct observation using VBF and VH channels:
	- $\overline{}$ $\overline{}$ $BR_{inv} < 0.54$ at 95% CL
	- **IIII** consistent with global fit: $BR_{inv} < 0.52$ at 95% CL
- Estimate sensitivity to BR_{inv} by $E_T^{\rm miss}$ $_T^{\rm miss}$ control in ${\bf ZH},\;{\bf Z} \rightarrow {\bf ll}$
	- \blacksquare about 10% with 3ab⁻¹
- ☞ Sensitivity can be remarkably improved if VBF channel is considered
	- ➠ strongly dependent on experimental conditions
	- ➠ not reliably projectable so far

If direct searches are combined with the other SM channels, precision could be pinned down to 5% level

The combined precision on invisible decays at ILC can be reduced to 0.5% level

Tensor structure of the Higgs sector $(J^{CP}$ numbers) can be best probed by angular analysis

- **HL-LHC will allow assessing the individ**ual terms in a generic parameterization of the Lagrangian
- ☞ Mixing between CP-even and CP-odd state can in particular being studied

 $\sqrt{a^2 + 1}$ The decay amplitude for a spin-0 boson

$$
A = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} (\mathbf{a}_1 g_{\mu\nu} M_X^2 + \mathbf{a}_2 q_{1\mu} q_{2\nu} + \mathbf{a}_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta})
$$

 \Rightarrow SM-Higgs \rightarrow ZZ, WW:

- \rightarrow $\rm{a_{1}} \neq 0$, $\rm{a_{2}}$ \sim O (10^{-2}) , $\rm{a_{3}}$ \sim O (10^{-11})
- **IND** BSM pseudo-scalar Higgs: $a_3 \neq 0$
- ^{ाङ} Fraction of CP-odd $\rm f_{a_3}$ is defined under the assumption $a_2 = 0$

Big sensitivity gain from HL-LHC

BSM (2HDM)

Many BSM models have extra doublet (H, A, H^+, H^-)

☞ Search additional Higgs fields at high masses

- $□$ Performed full MC analysis of $H → ZZ$ and $A \rightarrow Zh$ resonances in Type I and II 2HDM's
	- ➠ type II includes MSSM
	- ➠ constrained 2HDM parameter space of $\tan \beta$ and $\cos(\beta - \alpha)$
	- **indirect constrain from coupling fits favor** $\cos(\beta - \alpha) \rightarrow 0$ (the SM Higgs boson)
	- \blacksquare \blacktriangleright H/A decays have tt threshold effect
		- \rightarrow discovery potential $m_{H/A} < 2m_t$ (type II)

Direct search can probe region close to the alignment limit, that may still be allowed by coupling fits (difficult to compare with ILC expectations due to incoherent assumptions)

Double Higgs production among the main objectives of HL-LHC, but this process is very challenging

- ☞ Low rate makes high demands on detectors and integrated luminosity
	- **tiny cross section** $\sigma(HH) = 40 \pm 3$ fb (120K)
	- ➠ finding one requires at least 500K events
	- WE theoretical studies suggest possible: [arXiv:1309.6318]
	- 111⇒ problematic also at high energy e^+e^- machines
- ☞ Self coupling diagrams interferes destructively with double Higgs processes
	- ➠ look for a deficiency in a small signal

Ongoing studies suggest some sensitivity. To reach comparable sensitivity the ILC has to run at 1 TeV

Produced Events at 3000 fb⁻¹

☞ Inspired from MSSM couplings of the light SM-like Higgs boson are modified at tree level:

$$
\begin{array}{lcl} \Delta k_V / k & \simeq & 1 - 0.3\% \Bigl(\dfrac{200~GeV}{m_A} \Bigr)^4 \\[2ex] \Delta k_{t,c} / k & \simeq & 1 - 1.7\% \Bigl(\dfrac{200~GeV}{m_A} \Bigr)^2 \\[2ex] \Delta k_{b,\tau} / k & \simeq & 1 + 40\% \Bigl(\dfrac{200~GeV}{m_A} \Bigr)^2 \\[2ex] \end{array}
$$

■ Loop induced couplings are modified due to a scalar toppartner as

$$
\begin{array}{lcl} \Delta k_g/k & \simeq & 1 + 1.4\% \Bigl(\dfrac{1~TeV}{m_T} \Bigr)^2 \\[2ex] \Delta k_\gamma/k & \simeq & 1 - 0.4\% \Bigl(\dfrac{1~TeV}{m_T} \Bigr)^2 \end{array}
$$

put under the pressure by the current stop limits

Worth to focus on tasks where $ILC(250)$ can go beyond HL-LHC

Can go much beyond the HL-LHC for BR_{inv} , $\Gamma_{\rm tot}$ and k_c . Remarkable improvement for $k_{\tau,b}$ can be achieved.

- ાજી 30 fb $^{-1}$ of LHC data has allowed the Higgs discovery
	- ➠ overall we see so far is very well compatible with the SM
	- ➠ precision Higgs boson property studies become pivotal
- ¤ \rm{F} The approved LHC plan is to deliver 300 fb $^{-1}$ by 2021
	- ➠ the upgrade of the machine is designed to integrate up to $3{\rm ab}^{-1}$ in about 10 years
	- ➠ major detector and trigger upgrades are planned to maintain or improve current physics performances
- ☞ Higgs properties are expected to be pinned down to the level of a few percent at HL-LHC phase
- ☞ First stage of the ILC (250) can go beyond HL-LHC in the following analyses
	- \blacksquare invisible branching BR_{inv} of a Higgs boson
	- \blacksquare measurement of the total width $\Gamma_{\rm tot}$
	- **IND** $k_{\tau,b}$ most sensitive Higgs couplings to NP (MSSM)
	- \mathbf{w} k_c not accessible at LHC

Worth to consider a possible contribution of the group to these analyses!

The boson that we found looks rather "standard" scalar at first sight: (Check the vacuum stability up to the Plank scale $M_{Pl} \sim 10^{19}$ GeV)

☞ Experimental clues of the BSM physics

- ➠ Dark Matter (DM) points to WIMPs
- **IIII** Baryogenesis requires \overrightarrow{B} processes
- ➠ neutrino mass

☞ Indirect Searches

➠ precision coupling measurement

 $\Delta k/k \propto 1/M_A^2$

- ➠ extended Higgs sector in SUSY ⊪⇒ $B_{s,d}$ \rightarrow $\mu^+\mu^-$, TGC, etc
- ☞ Direct Searches of BSM
	- ➠ SUSY, DM, heavy resonances

 $\Delta k/k \sim 10(1)\% \Rightarrow M_A \sim 1$ -1.5(3-4) TeV

图 Allow for free cross sections in three channels and fit for the common mass

\mathbb{R} H \rightarrow ZZ \rightarrow 4]:

- ➠ limited by statistics
- \implies exploit m(4l) and k_D
- ➠ very good control of lepton energy scale and resolution

 $m_X = 125.8 \pm 0.5({\rm stat}) \pm 0.2({\rm syst})$ GeV

\mathbb{R} \mathbb{H} → $\gamma\gamma$:

- ➠ limited by systematics
- **0.2%** due to $e \rightarrow \gamma$ uncertainty
- **0.4%** extrapolation Z→ee to H→ $\gamma\gamma$

 $m_X = 125.4 \pm 0.5({\rm stat}) \pm 0.6({\rm syst})$ GeV

[HIG-13-005]

[HIG-13-005]

☞ Overall best-fit signal strength in the combination: $\sigma/\sigma_{SM} = 0.80 \pm 0.14$

Event yields in different production and decay modes are self-consistent

 $□$ Combination of "inclusive" WW (0/1jet) and ZZ yields gives the ratio of the Higgs couplings to WW and ZZ, g_W/g_Z , which is protected by custodial symmetry

 $\rho =$ $\boldsymbol{M_W}$ $M_Z \cos\theta_W$ = g_W $\bm{g}_{\bm{Z}} \cos \bm{\theta}_{\bm{W}}$ $= 1$

- $\Box \Rightarrow \rho \neq 1$ is possible in new physics models
- ☞ Perform combination of all channels to assess $\lambda_{WZ} = k_W / k_Z$
	- \blacksquare likelihood scan versus 3 n.d.f.: λ_{WZ} , k_Z , and k_F gives

 $\left|\lambda_{WZ}\right|=[0.62-1.19]$ at 95% CL

expectation

☞ New particles can modify the loopmediated couplings and contribute to the total width

 $\Gamma_{tot} = \sum \Gamma_{i(SM)} + \Gamma_{BSM}$

- ☞ Parameterize the photon and the gluon loops with effective scale factors (k_q,k_γ)
- ^{■■} Allow total width to scale as $1/(1-\mathcal{B}_{\rm inv})$

No large invisible branching fraction

■ Spin-0 and 2 are only allowed by H → $\gamma\gamma$ channel

- **IIIII** spin-0 is required if it is a Higgs
- **spin-2 induced by KK-graviton couplings**

■ Parity

- ➠ SM Higgs CP-even
- ➠ BSM Higgs CP-odd

$H\rightarrow ZZ\rightarrow 4l$ is most straightforward

The data disfavors the $0^ (2^+_m)$ hypothesis with 99.8% (99.4%) CL The observation is well compatible with

SM Higgs expectations (0^+)

Spin-0 and 2 are only allowed by $H \rightarrow \gamma \gamma$ channel

- ☞ Discrimination between spin-0 and spin-2 is straightforward with WW and ZZ:
	- \blacksquare WW is most significant (0-jet only)
	- ➠ modify selections to extend spin-2 enriched phase space

- ☞ Observed results weaker than expected especially for WW due to best fit $\mu < 1$ (like having less luminosity)
- ☞ Observed better than expected for ZZ due to a fluctuation

The data disfavors the 2^+_m hypothesis with 99.4% CL

The observation is well compatible with SM Higgs expectations (0^+)

Data disfavor $J^P=0^-$ at 2.5σ (< 3% CL) $\mathsf{J}^\mathrm{P}=$ 0^+ is consistent with observation (0.6σ)

Gluon fusion (GF) and Vector Boson Fusion (VBF) are the two most copious Higgs production processes at LHC

☞ GF production is dominant

- ➠ large k-factor (∼2)
- ➠ associated jets are emerged due to soft gluon radiation at NLO
- ➠ large theory (systematic) uncertainty

- ☞ VBF has clean signature but low rate
	- \blacksquare low k-factor (~1.1)
	- **associated with LO** jets primarily
	- ➠ low theory (systematic) uncertainty

2010

LHC HIGGS XS WG

200

☞ Stellar performance of the LHC

- ➠ extremely successful operation for these 3 years
- ➠ 7 TeV collisions are started in March 2010
- ➠ upgraded center-of-mass energy to 8 TeV in 2012
- ☞ Available dataset for the analyses with all subdetectors on
	- н \bullet 7 TeV: \leq 5.1 fb⁻¹
	- Heta B TeV : \leq 19.6 fb⁻¹
	- ➠ high detector efficiency

LHC restart in 2015 with a collision energy of \simeq 13 TeV and increased beam intensity

CMS Integrated Luminosity, pp

 \sqrt{s} =8 TeV: 25-30% higher cross section $\overrightarrow{\text{than}}$ \sqrt{s} =7 TeV at low Higgs boson mass

☞ Particle Flow (PF) algorithm:

- ➠ provides a global event description in form of list of particles
- ➠ improvements in jet, tau and $E_T^{\rm miss}$ measurement

Improves reconstruction performance at high PU

D^{es} Excellent performance of the CMS experiment in 2012

- ➠ 90% of recorded data with all subdetectors on
- HU⇒ peak luminosity $7 \times 10^{33} \text{cm}^{-2}\text{s}^{-1}$ at 8 TeV CM energy
- ➠ mean pile-up (PU) 21 events

29 distinct vertices have been reconstructed corresponding to 29 distinct collisions within a single crossing of the LHC beam

Leptons and MET are almost insensitive to pileup

Precise SM Measurements

☞ Good understanding of the detector and accurate theory predictions

- ➠ precise measurements of the SM processes over many orders of magnitude
- ➠ good knowledge of the background to Higgs analyses and BSM searches

- ☞ Standard Model (SM) is confirmed to better than 1% uncertainty by 100 's of \qquad CMS 2010 dilepton \qquad CMS 2010 dilepton 175.5 $^{\frac{1}{15.52}4.6 \pm 4.6}_{(val. z \sin, z \sin)}$ precision measurements
	- ➠ Higgs boson was the only missing piece of the SM
	- ☞ Mass of W boson is a fundamental parameter of the SM (WA $m_W = 80385 \pm 15$ MeV)

 $\mathrm{m}_W = \sqrt{\frac{\pi \alpha}{G_{\mathrm{EM}}} }$ $\boldsymbol{G}_{\boldsymbol{F}}$ $\frac{\alpha}{\alpha}$ 2 1 $\sin\theta_W$ $\frac{1}{\sqrt{2}}$ $\overline{1\!-\!\Delta R}$

Radiative corrections $\Delta R \sim 4\%$:

 $\rm CMS: m_t=173.4\pm1.0\,\,GeV$

Tevatron: $m_t = 173.2 \pm 0.9$ GeV

Observed agreement demonstrates impressive consistency of the SM