

What HL-LHC can (not) do (based on examples with CMS)?

Serguei GANJOUR

CEA-Saclay/IRFU, Gif-sur-Yvette, France

Higgs Physics Goals

Last year discovery of a new boson at the LHC opened the new horizons at the Energy Frontiers

- The boson that we found looks rather "standard" scalar at first sight
- Unraveling its nature is the major effort

 $f A \; Higgs \; Boson
ightarrow \ The \; Higgs \; Boson
ightarrow \ The \; SM \; Higgs \; Boson$

- The SM begins to unravel when probed beyond the range of current accelerators
- No hint of New Physics so far: indirect searches become pivotal!
 - precision coupling measurement

$$\Delta k/k \propto 1/M_{\Lambda}^2$$
 $\Delta k/k \sim 10(1)\% \Rightarrow M_{\Lambda} \sim 1\text{-}1.5(3\text{-}4) \text{ TeV}$

LHC Up To 2021 and Beyond

LHC approved running to deliver 300 fb⁻¹ by 2021 with 20x Higgs boson production so far

- $ightharpoonup
 m{Post LS3 operation at } 5 imes 10^{34} \
 m{cm}^{-2} \,
 m{s}^{-1}$
 - **■** 25 ns bunch spacing
 - $3000 \text{ fb}^{-1} \text{ over } 10 \text{ years}$
 - **■** 140 events per bunch crossing
- Major upgrades required on the LHC (replace more than 1.2 km):
 - new IR-quads Nb₃Sn (inner triplets)
 - m new 11 T Nb₃Sn (short) dipoles
 - collimation upgrade
 - cryogenics upgrade
 - crab cavities

LHC revamp is resuming in 2015, with \sqrt{s} unlikely exceeding 13 TeV

Projections done assuming 14 TeV, little difference for analysis performance

Experimental Challenge

29 distinct vertices have been reconstructed corresponding to 29 distinct collisions within a single crossing of the LHC beam

Leptons and MET are almost insensitive to pileup at current lumi

- Figure 20 events per bunch-crossing
- continue to do an excellent job with 30 events
- handle 70 events of pileup

But 140 events of pileup will be a challenge

Detector Upgrade

■ Detector upgrade needed

- to withstand radiation damage and pileup
- to maintain or enhance the current physics performance
- CMS will undergo a series of detector and trigger upgrades
 - several subdetectors will be improved or replaced
 - trigger is a key component
 - → mandated by need to study the Higgs boson
 - → thresholds not too dissimilar to today

[CMS-NOTE-13-002, arXiv:1307.7135]

Current and Phase 1 trigger efficiency: upgraded trigger system available for data taking in 2016

HL-LHC Physics Goal

™ What have we learned?

- the experiment is working remarkably
 - → operations, detector performance and simulation
- the SM is in great shape
 - → N(N)LO calculations match data very well

□ HL-LHC Physics Goal in Higgs Sector

- rare decays & couplings
- spin and CP studies
- **BSM** Higgs boson searches
- Higgs boson pair production

HL-LHC as Higgs Factory

™ HL-LHC is a real Higgs factory

- a couple of Higgs events produced per sec
- \longrightarrow compare to e^+e^- colliders:
 - → less than 10 events per hour at $L = 10^{34} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$

Most of the exclusive final states are accessible, including in particular very rare ones

$$\mathbf{20K} \ \mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4\mathrm{l}$$

$$30K H \rightarrow \mu\mu$$

$$\mathbf{50} \ \mathrm{H} \rightarrow \mathrm{J}/\psi \gamma$$
 (couplings to c-quark)

Channel	σ , pb	Rate, Hz	Events,	Events ,
		$L=50 \text{ pb}^{-1} \text{ s}^{-1}$	$L=3ab^{-1}$	$L=30 {\rm fb}^{-1}$
	(14 TeV)	(14TeV)	(14TeV)	(8TeV)
ggH	50.4	2.52	150M	600K
VBF	4.2	0.21	13M	48K
WH	1.5	0.08	4.5M	21K
ZH	0.9	0.04	2.6M	12K
ttH	0.6	0.03	1.8M	4K

Enable to probe redundantly most of the coupling factors

Tools for Projections

Projection Approach:

- Scale results of current analyses
- Two scenarios considered:
 - Scenario 1 (conservative): same experimental and theory systematic uncertainties as today
 - Scenario 2 (ambitious): experimental syst. scaled by $1/\sqrt{L}$, theory syst. halved
- Assume detector upgrade keeps current performance
- Supported by full simulation studies

use more pessimistic performance for current studies

Example of Analyses

$ext{H} o ext{ZZ} o 4 \mu$

- **™** Worth **full** study with DELPHES
- From $|\eta| < 2.4$ to $|\eta| < 4 \rightarrow$ in Phase II detector upgrades
 - sizable acceptance increases 45%

$$m H
ightarrow 2 \mu$$

- Rescale of current analysis
- Allows direct study of coupling to two different leptons
 - tests lepton flavor violation
- $3000 \, \mathrm{fb}^{-1}$ at 14TeV offers new possibilities
 - signal to background marginal
 - but a measurement is possible

Signal Strength

First step to assess compatibility to SM

- perform single parameter fit, signal strength $\mu = \sigma/\sigma_{
 m SM}$
- $^{ imp}$ group decay channels together and express results as σ_{μ}/μ

[Scenario 2, Scenario 1]

$L (fb^{-1})$	$\gamma\gamma$	WW	ZZ	bb	au au	$Z\gamma$	$\mu\mu$	inv.
300	[6, 12]	[6, 11]	[7, 11]	[11, 14]	[8, 14]	[62, 62]	[40,42]	[17, 28]
3000	[4, 8]	[4, 7]	[4, 7]	[5, 7]	[5, 8]	[20, 24]	[14,20]	[6, 17]

Not always straightforward to interpret: worth separation of production modes

Couplings to Bosons and Fermions

Attach a modifier to the SM prediction

$$\sigma \mathcal{B}(ii o H o ff)\sim rac{\Gamma_{ii}\Gamma_{ff}}{\Gamma_{tot}}=\sigma_{SM}\cdot \mathcal{B}_{SM}rac{k_i^2\cdot k_f^2}{k_H^2}$$

- "Vectorial" and "Fermionic" sets:
 - $H \rightarrow \gamma \gamma$ is the only channel that is sensitive to k_V or k_F relative sign
 - → possible to sort out degeneracy

In agreement with the SM within uncertainties

Higgs Coupling Results So Far

Compatibility with the SM Higgs Boson Couplings

CMS Preliminary (\$\sigma = 7\text{ TeV}, L \le 5.1\text{ fb}^1\text{ (\$\sigma = 8\text{ TeV}, L \le 19.6\text{ fb}^1\text{ fb}^1\text{ (\$\sigma = 8\text{ TeV}, L \le 19.6\text{ fb}^1\text{ fb}^1\tex

The generic
five-parameter model not
effective loop couplings
(the SM structure is assumed
for loop-induced couplings)

Not effective loop couplings as function of the mass

New particles can modify the loop-mediated couplings and contribute to the total width

$$\Gamma_{tot} = \sum \Gamma_{i(SM)} + \Gamma_{BSM}$$

No significant deviations from the SM Higgs boson are found so far

Coupling Fit Tools

Extracting Higgs couplings requires assumptions at LHC

- Total width $\Gamma_{
 m H} \sim k_H^2$ is not measurable
 - not possible to measure directly a production cross section as at a e^+e^- collider
- Follow recommendations and fit models described in Yellow Report 3 [arXiv:1307.1347]
 - \implies assumed $k_H = \sum k_i B R_i$, only for i in SM
 - \rightarrow total width controlled by $H \rightarrow bb$
 - \rightarrow H \rightarrow cc is a 5% unaccessible contribution (assumed to scale with bb)
 - → no contributions from BSM
- \square Global fits targeting the k factors
 - do not resolve loops, effective coupling instead $(k_{\gamma}, k_q \text{ and } k_{Z\gamma})$

Results reported in terms of 68% uncertainties $(-2\Delta \ln L=1)$ on k

Coupling Fit Results

Assume no new undetectable modes

- in an ambitious scenario, ultimate precision is about 2% for couplings involved in the main decay modes
- Results are more "stable" if total width absorbed by a reference scale factor
 - look at ratios of couplings for direct comparison

HL-LHC can lead to an accuracy of about 5-8% for many coupling constants in scenario conservatively covering the range of future performances

[Scenario 2, Scenario 1]

$L \left(fb^{-1} \right)$	k_{γ}	k_W	k_Z	k_g	k_b	k_t	$k_{ au}$	$k_{Z\gamma}$	$k_{\mu\mu}$	BR _{SM}
300	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]	[7, 11]

Theoretical Uncertainty

Current results are still limited by statistical uncertainty

- Two major questions arise for the future prospectives:
 - what are the most relevant systematic uncertainties?
 - what role do the theoretical uncertainties play?
- Theoretical uncertainties affects the ultimate precision achievable by experiment
- Reducing them it is worth the effort!

HL-LHC can ultimately reach an accuracy of below 5% for many coupling constants

Invisible Higgs Decays BR_{inv}

- Current direct observation usingVBF and VH channels:
 - $BR_{inv} < 0.54$ at 95% CL
 - consistent with global fit: $BR_{inv} < 0.52$ at 95% CL
- Estimate sensitivity to BR_{inv} by E_T^{miss} control in $\mathbf{ZH},\ \mathbf{Z} \to \mathbf{ll}$
 - \longrightarrow about 10% with $3ab^{-1}$
- Sensitivity can be remarkably improved if VBF channel is considered
 - strongly dependent on experimental conditions
 - not reliably projectable so far

If direct searches are combined with the other SM channels, precision could be pinned down to 5% level

The combined precision on invisible decays at ILC can be reduced to 0.5% level

J^{CP} Properties

Tensor structure of the Higgs sector (J^{CP} numbers) can be best probed by angular analysis

- WHL-LHC will allow assessing the individual terms in a generic parameterization of the Lagrangian
- Mixing between CP-even and CP-odd state can in particular being studied
- ightharpoonup The decay amplitude for a ${
 m spin-0}$ boson

$$A = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} (\mathbf{a_1} g_{\mu\nu} M_X^2 + \mathbf{a_2} q_{1\mu} q_{2\nu} + \mathbf{a_3} \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta})$$

 \longrightarrow SM-Higgs \rightarrow ZZ,WW:

→
$$\mathbf{a_1} \neq 0$$
, $\mathbf{a_2} \sim O(10^{-2})$, $\mathbf{a_3} \sim O(10^{-11})$

- \blacksquare BSM pseudo-scalar Higgs: $a_3 \neq 0$
- Fraction of CP-odd f_{a_3} is defined under the assumption $a_2=0$

Big sensitivity gain from HL-LHC

× \(\sqrt{NLL}\)

BSM (2HDM)

[FTR-13-024]

Many BSM models have extra doublet (H, A, H^+, H^-)

- Search additional Higgs fields at high masses
- Performed full MC analysis of $H \to ZZ$ and $A \to Zh$ resonances in Type I and II 2HDM's
 - *** type II includes MSSM
 - constrained 2HDM parameter space of aneta and $\cos(eta-lpha)$
 - indirect constrain from coupling fits favor $\cos(\beta \alpha) \to 0$ (the SM Higgs boson)
 - **H/A** decays have tt threshold effect
 - \rightarrow discovery potential $m_{H/A} < 2m_t$ (type II)

Direct search can probe region close to the alignment limit, that may still be allowed by coupling fits

(difficult to compare with ILC expectations due to incoherent assumptions)

Higgs Self Coupling

Double Higgs production among the main objectives of HL-LHC, but this process is very challenging

- Low rate makes high demands on detectors and integrated luminosity
 - tiny cross section $\sigma(HH) = 40 \pm 3 \, \text{fb} \, (120 \, \text{K})$
 - finding one requires at least 500K events
 - theoretical studies suggest possible:[arXiv:1309.6318]
 - \blacksquare problematic also at high energy e^+e^- machines
- Self coupling diagrams interferes destructively with double Higgs processes
 - look for a deficiency in a small signal

Ongoing studies suggest some sensitivity.

To reach comparable sensitivity the ILC has to
run at 1 TeV

Higgs self coupling process

SM Double Higgs production

Produced Events at 3000 fb⁻¹

Mode	Yield
bbWW	30000
bb au au	9000
WWWW	6000
$\gamma\gamma$ bb	320

Focus on ILC(250) Run

Inspired from MSSM couplings of the light SM-like Higgs boson are modified at tree level:

$$egin{array}{lcl} \Delta k_V/k &\simeq & 1-0.3\% \Big(rac{200 \; GeV}{m_A}\Big)^4 \ \Delta k_{t,c}/k &\simeq & 1-1.7\% \Big(rac{200 \; GeV}{m_A}\Big)^2 \end{array}$$

$$\Delta k_{b, au}/k ~\simeq ~ 1 + 40\% \Bigl(rac{200~GeV}{m_A}\Bigr)^2$$

Loop induced couplings are modified due to a scalar toppartner as

$$egin{array}{lll} \Delta k_g/k &\simeq 1+1.4\% \Big(rac{1\ TeV}{m_T}\Big)^2 \ \Delta k_\gamma/k &\simeq 1-0.4\% \Big(rac{1\ TeV}{m_T}\Big)^2 \end{array}$$

put under the pressure by the current stop limits

Worth to focus on tasks where ILC(250) can go beyond HL-LHC

[Scenario 2, Scenario 1]

	-			-	
Coupling	LHC	HL-LHC	ILC(250) ILC(500)	ILC(1000)
k_W	[4,6]%	[2,5]%	1.9%	0.24%	0.17%
k_Z	[4,6]%	[2,4]%	0.44%	0.30%	0.27%
k_b	[10,13]%	[4,7]%	2.7%	0.94%	0.69%
k_g	[6,8]%	[3,5]%	4.0%	2.0%	1.4%
$\mid k_{\gamma} \mid$	[5,7]%	[2,5]%	4.9%	4.3%	3.3%
$k_{ au}$	[6,8]%	[2,5]%	3.3%	1.9%	1.4%
k_c	_	-	4.7%	2.5%	2.1%
k_t	[14,15]%	[7,10]%	14.2%	9.3%	3.7%
k_{μ}	[23,23]%	[8,8]%	-	_	16%
λ	_	30%	-	104%	26%
$ m BR_{inv}$	[14,18]%	[7,11]%	0.44%	0.30%	0.26%
$\Gamma_{ m tot}$	_	-	4.8%	1.6%	1.2%

Can go much beyond the HL-LHC for BR_{inv} , Γ_{tot} and k_c . Remarkable improvement for $k_{\tau,b}$ can be achieved.

CMS powers only included

Summary

- \sim 30 fb⁻¹ of LHC data has allowed the Higgs discovery
 - overall we see so far is very well compatible with the SM
 - precision Higgs boson property studies become pivotal
- The approved LHC plan is to deliver $300 \, \text{fb}^{-1}$ by 2021
 - the upgrade of the machine is designed to integrate up to $3ab^{-1}$ in about 10 years
 - major detector and trigger upgrades are planned to maintain or improve current physics performances
- Higgs properties are expected to be pinned down to the level of a few percent at HL-LHC phase
- First stage of the ILC (250) can go beyond HL-LHC in the following analyses
 - invisible branching $\mathbf{BR_{inv}}$ of a Higgs boson
 - ightharpoonup measurement of the total width $\Gamma_{
 m tot}$
 - $k_{ au,b}$ most sensitive Higgs couplings to NP (MSSM)
 - k_c not accessible at LHC

Worth to consider a possible contribution of the group to these analyses!

Backup

Where We Are?

The boson that we found looks rather "standard" scalar at first sight: (Check the vacuum stability up to the Plank scale $M_{Pl} \sim 10^{19}$ GeV)

- Experimental clues of the BSM physics
 - Dark Matter (DM) points to WIMPs
 - \blacksquare Baryogenesis requires B processes
 - neutrino mass

Indirect Searches

precision coupling measurement

$$\Delta k/k \propto 1/M_{\Lambda}^2$$

- extended Higgs sector in SUSY
- $\mathrm{B_{s,d}} \to \mu^+\mu^-$, TGC, etc

□ Direct Searches of BSM

■ SUSY, DM, heavy resonances

[J.Ellis, et al., Phys. Lett. B679:369-375 (2009)]

CMS Projection

$$\Delta k/k \sim 10(1)\% \Rightarrow M_{\Lambda} \sim 1-1.5(3-4) \text{ TeV}$$

Characterization of the Excess: Mass

Allow for free cross sections in three channels and fit for the common mass

$\mathbb{R} H \rightarrow \mathbb{Z}\mathbb{Z} \rightarrow 4\mathbb{I}$:

- **I** limited by statistics
- \longrightarrow exploit m(4l) and k_D
- very good control of lepton energy scale and resolution

$$m_X = 125.8 \pm 0.5 {
m (stat)} \pm 0.2 {
m (syst)} \; {
m GeV}$$

$\mathbb{F} H \rightarrow \gamma \gamma$:

- limited by systematics
- \longrightarrow 0.2% due to $e \rightarrow \gamma$ uncertainty
- 0.4% extrapolation Z \rightarrow ee to H $\rightarrow \gamma \gamma$

$$m_X = 125.4 \pm 0.5 {
m (stat)} \pm 0.6 {
m (syst)} \; {
m GeV}$$

[HIG-13-005]

Combine two best mass resolution decays $\gamma\gamma$ and ZZ

$$m_X = 125.7 \pm 0.3 {
m (stat)} \pm 0.3 {
m (syst)} \; {
m GeV}$$

Compatibility with SM: Signal Strength

[HIG-13-005]

Overall best-fit signal strength in the combination: $\sigma/\sigma_{SM}=0.80\pm0.14$

Event yields in different production and decay modes are self-consistent

Couplings to the W and Z bosons

Combination of "inclusive" WW (0/1jet) and ZZ yields gives the ratio of the Higgs couplings to WW and ZZ, g_W/g_Z , which is protected by custodial symmetry

$$ho = rac{M_W}{M_Z\cos heta_W} = rac{g_W}{g_Z\cos heta_W} = 1$$

- $\rho \neq 1$ is possible in new physics models
- Perform combination of all channels to assess $\lambda_{WZ} = k_W/k_Z$
 - likelihood scan versus 3 n.d.f.: λ_{WZ} , k_Z , and k_F gives

$$\lambda_{WZ} = [0.62 - 1.19]$$
 at 95% CL

Consistent with the SM expectation

Constraint on BSM

New particles can modify the loopmediated couplings and contribute to the total width

$$\Gamma_{tot} = \sum \Gamma_{i(SM)} + \Gamma_{BSM}$$

- Parameterize the photon and the gluon loops with effective scale factors (k_g, k_γ)
- \square Allow total width to scale as $1/(1-\mathcal{B}_{\mathrm{inv}})$

No large invisible branching fraction

Spin and CP-Parity

ightharpoons Spin-0 and 2 are only allowed by $extsf{H} ightharpoons \gamma \gamma$ channel

- spin-0 is required if it is a Higgs
- spin-2 induced by KK-graviton couplings

Parity

- SM Higgs CP-even
- BSM Higgs CP-odd

 $H \rightarrow ZZ \rightarrow 4l$ is most straightforward

J^p	production	comment	expect (µ=1)	obs. 0 ⁺	obs. J^p	CL_s
0-	$gg \rightarrow X$	pseudoscalar	2.6σ (2.8σ)	0.5σ	3.3σ	0.16%
O_h^+	$gg \rightarrow X$	higher dim operators	1.7σ (1.8 σ)	0.0σ	1.7σ	8.1%
2 ⁺ _{mgg}	$gg \rightarrow X$	minimal couplings	1.8σ (1.9 σ)	0.8σ	2.7σ	1.5%
2 ⁺ mgā	$qar{q} o X$	minimal couplings	1.7σ (1.9 σ)	1.8σ	4.0σ	<0.1%
1- "	$q\bar{q} o X$	exotic vector	2.8σ (3.1 σ)	1.4σ	$>$ 4.0 σ	<0.1%
1+	$q\bar{q} o X$	exotic pseudovector	2.3σ (2.6σ)	1.7σ	$>$ 4.0 σ	<0.1%

The data disfavors the $0^ (2_m^+)$ hypothesis with 99.8% (99.4%) CL

The observation is well compatible with SM Higgs expectations (0^+)

Spin-0 vs. Spin-2

Spin-0 and 2 are only allowed by $H\rightarrow \gamma\gamma$ channel

- Discrimination between spin-0 and spin-2 is straightforward with WW and ZZ:
 - WW is most significant (0-jet only)
 - modify selections to extend spin-2 enriched phase space

	ZZ	WW	Comb
exp.	6.8%	1.4%	0.2%
obs.	1.4%	14.0%	0.6%

- Observed results weaker than expected especially for WW due to best fit $\mu < 1$ (like having less luminosity)
- Observed better than expected for ZZ due to a fluctuation

The data disfavors the 2_m^+ hypothesis with 99.4% CL

The observation is well compatible with SM Higgs expectations (0^+)

Measured CP-Parity with $H \rightarrow ZZ \rightarrow 4l$

 \sqrt{s} = 7 TeV, L = 5.1 fb⁻¹; \sqrt{s} = 8 TeV, L = 19.6 fb⁻¹ 7 2.5 35 30 25 1.5 20 15 0.5 0.2 0.4 0.6 0.8 f_{a3}

Expected separation between SM 0^+ and 0^- is 2σ

Data disfavor $J^P = 0^-$ at 2.5 σ (< 3% CL) $J^P = 0^+$ is consistent with observation (0.6 σ)

Fraction of CP-violating combination to the decay amplitude: $f_{a3} = 0^{+0.2}_{-0.0}$

Higgs Boson Production

Gluon fusion (GF) and Vector Boson Fusion (VBF) are the two most copious Higgs production processes at LHC

GF production is dominant

- In large k-factor (\sim 2)
- associated jets are emerged due to soft gluon radiation at NLO
- large theory (systematic) uncertainty

► VBF has clean signature but low rate

- low k-factor (\sim 1.1)
- associated with LO jets primarily
- low theory (systematic) uncertainty

Very rich mass region but also very challenging...

- $\gamma \gamma$, ZZ, WW, $\tau \tau$, bb
- $^{\square}$ 2 best mass resolution decay modes (\sim 1%): $\gamma\gamma$, ZZ
- Also includes searches in $H \to Z\gamma$ decays

Decay	Exp. Sign.	σ_M/M
	at 125.7 GeV	
$H \rightarrow \gamma \gamma$	3.9	1-2%
$H \rightarrow ZZ \rightarrow 4I$	7.1	1-2%
$H\rightarrow WW\rightarrow 2l2\nu$	5.3	20%
$H{ ightarrow}bb$	2.2	10%
$H \rightarrow \tau \tau$	2.6	10%

LHC Performance 2010-2011-2012

Stellar performance of the LHC

- extremely successful operation for these 3 years
- 7 TeV collisions are started in March 2010
- upgraded center-of-mass energy to 8 TeV in 2012
- Available dataset for the analyses with all subdetectors on
 - **7** TeV: ≤5.1 fb⁻¹
 - **№** 8 TeV: <19.6 fb⁻¹
 - high detector efficiency

LHC restart in 2015 with a collision energy of $\simeq 13$ TeV and increased beam intensity

CMS Integrated Luminosity, pp

 \sqrt{s} =8 TeV: 25-30% higher cross section than \sqrt{s} =7 TeV at low Higgs boson mass

Detector Layout and Subsystems

Data and Reconstruction Challenge

Particle Flow (PF) algorithm:

- provides a global event description in form of list of particles
- improvements in jet, tau and $E_T^{
 m miss}$ measurement

Improves reconstruction performance at high PU

Excellent performance of the CMS experiment in 2012

- 90% of recorded data with all subdetectors on
- peak luminosity $7 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ at 8 TeV CM energy
- mean pile-up (PU) 21 events

29 distinct vertices have been reconstructed corresponding to 29 distinct collisions within a single crossing of the LHC beam

Leptons and MET are almost insensitive to pileup

Precise SM Measurements

 $227 \pm 3 \pm 11 \pm 10 \text{ pb}$

400 σ(tt) (pb)

CMS prel. combined

ox. NNLO+NNLL QCD, Kido

- precise measurements of the SM processes over many orders of magnitude
- m good knowledge of the background to Higgs analyses and BSM searches

The Global Electroweak Fit of the SM

- Standard Model (SM) is confirmed to better than 1% uncertainty by 100's of precision measurements
 - Higgs boson was the only missing piece of the SM
- Mass of W boson is a fundamental parameter of the SM (WA $m_W = 80385 \pm 15 \text{ MeV}$)

$$\mathrm{m}_W = \sqrt{rac{\pi lpha}{G_F \sqrt{2}}} rac{1}{\sin heta_W \sqrt{1 - \Delta R}}$$

Radiative corrections $\Delta R \sim 4\%$:

CMS: $m_t = 173.4 \pm 1.0 \text{ GeV}$

Tevatron: $m_t=173.2\pm0.9$ GeV

Observed agreement demonstrates impressive consistency of the SM