SUSY benchmark after LHC8

Post LHC8 SUSY benchmark points for ILC physics

Howard Baer¹, Jenny List²

¹University of Oklahoma, Norman, OK 73019, USA ²DESY, Notkestraße 85, 22607 Hamburg, Germany

arXiv:1307.0782v1

http://www-flc.desy.de/ilcphysics/postLHC8-SUSYbenchmarks.php

Akiya Miyamoto for Friday meeting 17 Jan 2014

Theoretical motivation

- Supersymmetry is a symmetry between bosonic and fermionic field
- Appealing for theorists because it reduces quadratic divergences of scalar field to logarithmic.
- A solution for gauge hierarchy problem
 - weak scale stable against quantum corrections.
 - Stable extrapolation of SM to GUT scale
 - Provides a route to unification with gravity via local SUSY, supergravity model.

Indirect experimental evidence

- Guage coupling unification
 - SM gauge coupling at electro-weak scale meat at GUT point
- Precision electroweak measurements
 - consistent with a SUSY model with heavy SUSY particles
 - Top quark mass and electroweak symmetry breaking
 - ◆ Mt=150 ~ 200 GeV
- Light Higgs mass
- Dark matter: no SM particles are the candidate of cold dark matter, SUSY offers several candidates, such as the neutralino, the gravitino, a singlet sneutrino
- Baryogenesis: not possible to explain in the SM, but SUSY theories offer some candidates

Some problems for SUSY models

LHC

- ◆ No evidence with ~ 5fb⁻¹ at 7 TeV and ~ 20fb⁻¹ at 8 TeV
- ◆ CMS (11.7 fb⁻¹@8 TeV) excluded $m_{\tilde{g}} \lesssim 1500 \text{ GeV}$ in the mSUGRA for $m_{\tilde{q}} \simeq m_{\tilde{g}}$ $m_{\tilde{g}} \lesssim 1000 \text{ GeV}$ for $m_{\tilde{q}} \gg m_{\tilde{g}}$.

in the mSUGRA (=CMSSM)

Scenario with a universal light squark mass is excluded

- mSUGRA fits on EWPO, (g-2)_μ, B-meson decay BR, neutralino CDM excluded similar mass region.
- Mh=125 GeV → ruled out minimal version of gauge-mediated SUSY and anomaly mediated SUSY (lightest MSSM particle exceeded 5 TeV)

BP1:Natural SUSY

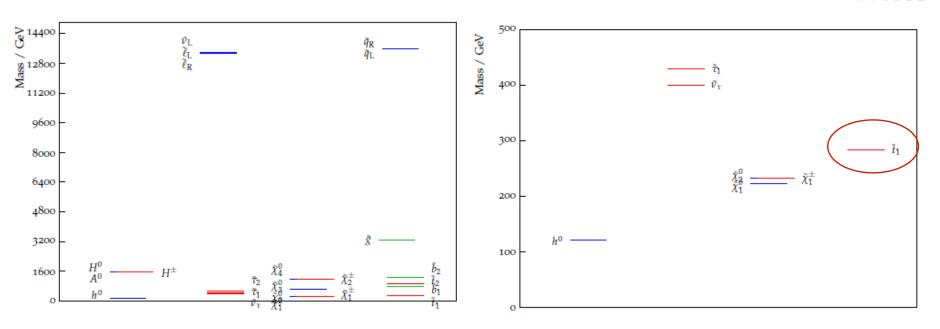
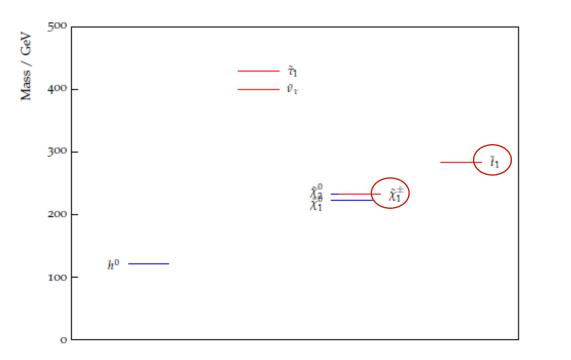



Figure 2: Left: Full spectrum of the natural SUSY benchmark. Right: Zoom into the spectrum below 500 GeV.

- a superpotential higgsino mass parameter $\mu \lesssim 100 300 \,\text{GeV}$,
- a sub-TeV spectrum of third generation squarks \tilde{t}_1 , \tilde{t}_2 and \tilde{b}_1 ,
- an intermediate scale gluino $m_{\tilde{g}} \lesssim 1.5 3 \text{ TeV}$ with $m_A \lesssim |\mu| \tan \beta$ and
- multi-TeV first/second generation matter scalars $m_{\tilde{q},\tilde{\ell}} \simeq 10 50 \,\text{TeV}$.

17 Jan 2014

- higgsino-like electroweakinos production at LHC \rightarrow missing Et events - next heavier particle is the \tilde{t}_1 . small mass difference $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} < \text{top mass}$ $\rightarrow \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \text{ dominates}, \text{missing Et + 2 acollinear b-jets}$

At ILC the spectrum of higgsino-like $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$ will be accessible for $\sqrt{s} \gtrsim 320 \text{ GeV}$, $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0 \tilde{\chi}_2^0$ pair production and $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ production

a mass gap $m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^0} \sim m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} \sim 7.5 \text{ GeV}$: \rightarrow small visible energy

a hard ISR photon radiated from the initial state may help

Cross section is typically in the few tens of fb region

As \sqrt{s} is increased past 600 - 800 GeV, $\tilde{t}_1 \bar{\tilde{t}}_1, \tilde{\nu}_\tau \bar{\tilde{\nu}}_\tau$ and $\tilde{\tau}_1 \bar{\tilde{\tau}}_1$ become successively accessible.

BP2:Radiatively-driven natural SUSY (RNS)

Motivated to minimize \Delta_EW, with large squark mass

requiring $\mu \simeq 100 - 300 \,\text{GeV}$ $m_{\tilde{t}_{1,2}} \simeq 1 - 4 \,\text{TeV}.$

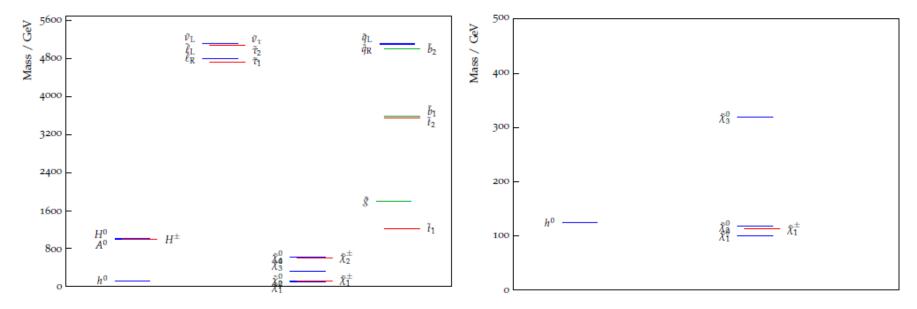


Figure 3: Left: Full spectrum of the RNS benchmark. Right: Zoom into the spectrum below 500 GeV.

- Observable at LHC as gluino cascade decay if gluino mass is low, but it could be 5 TeV. Could be seen as same sign di-boson production : $pp \rightarrow \tilde{\chi}_2^{\pm} \tilde{\chi}_4^0 \rightarrow (W^{\pm} \tilde{\chi}_2^0) + (W^{\pm} \tilde{\chi}_1^{\mp})$
- ILC: $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ or $\tilde{\chi}_1^0 \tilde{\chi}_2^0$. "The small mass gap, angular distribution and polarization dependence of the signal cross sections may all be used to help establish the higgsino-like nature..."

BP3: NUHM2 with light A, H, H+-

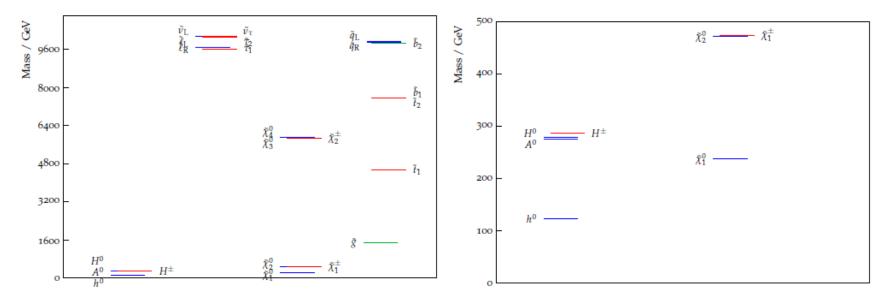


Figure 4: Left: Full spectrum of the NUHM2 benchmark. Right: Zoom into the spectrum below 500 GeV.

Light A, H, H+-, but remaing sparticles beyond LHC reach
Br(b->sγ) would be large due to tH+ loop contribution
LHC: may be light gluino (~ 1.46TeV)

need a dedicated analysis for g̃ → χ̃⁰₁tt̄ g̃ → (χ̃[±]₁ → χ̃⁰₁W[±])tb,
LHC14 should observe pp → χ̃⁺₁χ̃⁰₂ → Wh + E^{miss}_T → ℓν_ℓ + bb̄ + E^{miss}_T

ILC 0.5TeV, Ah, ZH at an observable rate Accessible to AH, H+-, Electroweakino (decays to real W+, Z)

BP4:mSUGRA/CMSSM

- Large portion of parameter space were ruled out by
 - direct search of gluino and squakrs at LHC8
 - mh~125 GeV \rightarrow excluded m_{1/2}<1 TeV for low m₀ and m₀<2.5 TeV for low m_{1/2}
 - Some remaining dark matter allowing parameter space (still fine tuned)

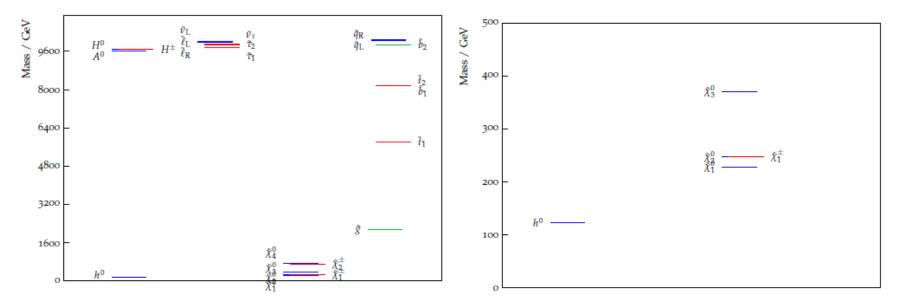


Figure 5: Left: Full spectrum of the mSugra benchmark. Right: Zoom into the spectrum below 500 GeV. For LHC14, missing Et $pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W^* h^* + E_T^{\text{miss}}$. ILC0.5 for $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ and $\tilde{\chi}_1^0 \tilde{\chi}_2^0$. $\tilde{\chi}_1^\pm - \tilde{\chi}_1^0$ mass gap is just 19 GeV.

BP5: Non-universal gaugino mass (NUGM)

■ Gaugino mass at GUT scale:

m0=3TeV, M1=0.3TeV, M2=0.25TeV, M3=0.75TeV were selected

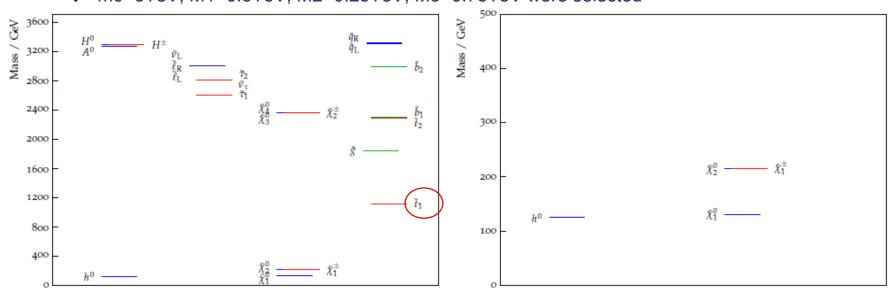
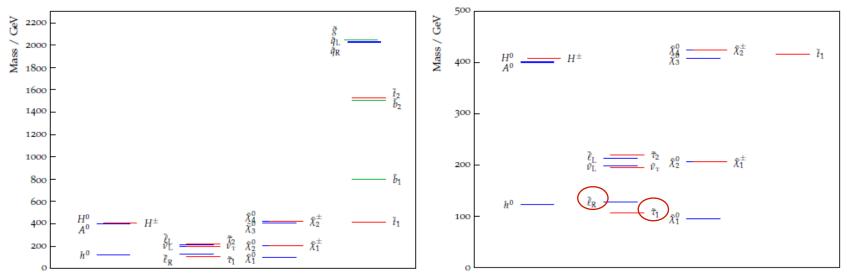


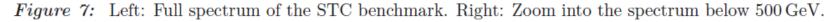
Figure 6: Left: Full spectrum of the NUGM benchmark. Right: Zoom into the spectrum below 500 GeV.

model should be testable in future LHC searches, not only in the standard jets plus missing E_t analyses, but also via searches tailored for very high multiplicity final states and using *b*-jet tagging [163], since the gluino almost exclusively decays via $\tilde{g} \to \tilde{t}_1 t$ followed by $\tilde{t}_1 \to \tilde{\chi}_1^0 t$. In addition, the production channel $pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to WZ + E_T^{\text{miss}}$ may be testable in the near future [164].

17 Jan 2014

Akiya Miyamoto, Friday Meeting


BP6: stau-coannihilation (STC)


pMSSM (phenomenological MSSM model)

• scenario with light $\tau \downarrow 1$: allows efficient dark matter annihilation mechanism & consistency with (g-2)µ anomaly and Br(b→sγ)

parameters

• m_{aluino} , μ , m_A , $tan\beta$, (2 or 3)x(m_Q , m_U , m_D , M_L , M_E), M_1 , M_2 , A_t , A_b , $A\tau$: 19 or 24 parameters

gluino and light squarks beyond current LHC8 limit

- light slepton is not detectable due to soft tau lepton
- many sleptons and electroweakinos obsable at ILC0.5, and further more at ILC1.0, but experimentally challenging to identify each of them due to cascade decay.

BP7:Kallosh-Linde(KL), G2MSSM, spread SUSY benchmark

- A model to avoid difficulty of minimal anomaly-mediation model which predict a ligh Higgs scalar (< 120 GeV)
- various scalar particles are heavy, similar to the gravitino mass ~ 100TeV, the gaugino remains O(1)TeV

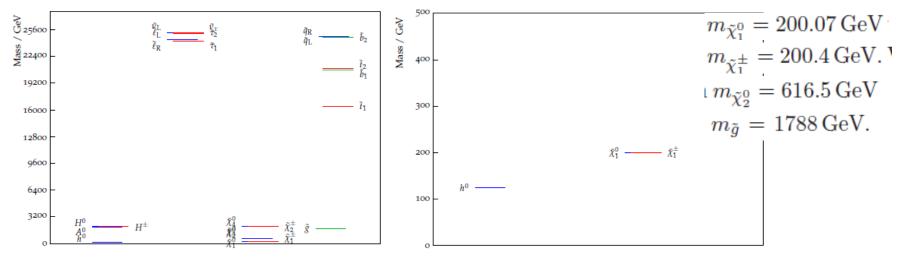


Figure 8: Left: Full spectrum of the KL benchmark. Right: Zoom into the spectrum below 500 GeV.

LHC14 accessible to the gluino pair production with O(100)fb-1

 ILC: wino-like chargino is quasi-stable: Highly ionizing track+decay into soft product pair production of chargino could be detected with ISR photon tagging

• ILC1.0: $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ production opens up $\tilde{\chi}_2^0 \to W \tilde{\chi}_1^{\pm}$ or $\tilde{\chi}_1^0 h$ to occur.

BP8: Brummer-Buchmuller(BB) BM

A model inspired by GUT-scale string compactification

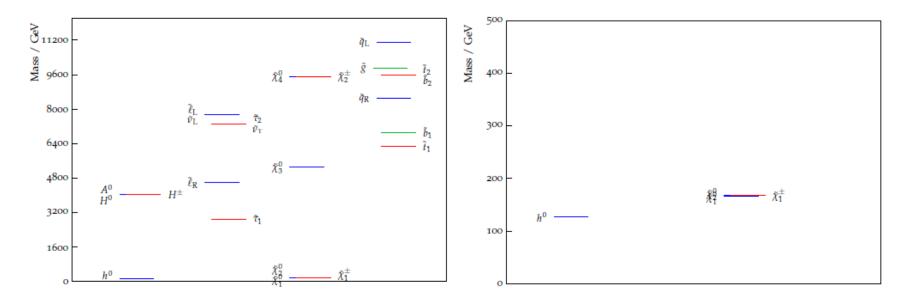


Figure 9: Left: Full spectrum of the BB benchmark. Right: Zoom into the spectrum below 500 GeV.

♦ gluino and squarks in several TeV range and escape LHC detection
 ♦ the model include higgsino-like light chargino and neutralino, accessible at ILC mass(χ ↓1,210) = 167, 168 GeV, mass(χ ↓1,21±)=167, 9520 GeV

BP9: Normal scalar mass hierarchy (NMH)

- Normal scalar mass hierarchy: $m_0(1) \sim m_0(2) \ll m_0(3)$
- Motivated by
 - >3 σ discrepancy of (g-2) μ (requires light smuons)
 - lack of a large discrepancy in Br(b \rightarrow s γ) (requires 3rd generation squarks beyond TeV)
- Need degeneration among first/second generation sfremions to suppress FCNC
- first/second generation squarks, light at GUT scale, get high mass value by renomalization group running to EW scale due to strong coupling, but sleptons remain light.

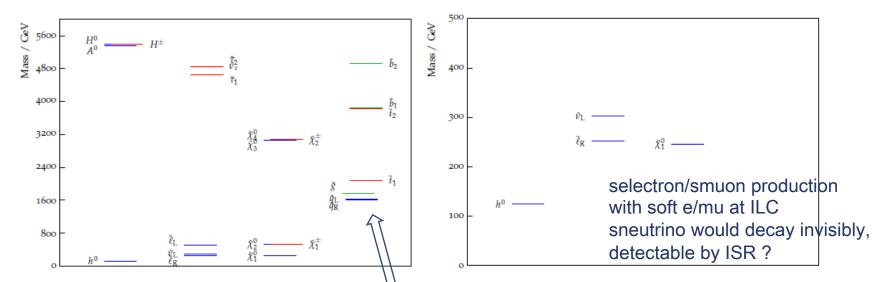


Figure 10: Left: Full spectrum of the NMH benchmark. Right: Zoom into the spectrum below 500 GeV.

Compatible with LHC8 result, but tested at LHC14

17 Jan 2014

Akiya Miyamoto, Friday Meeting

BP10: Low mH scenario(LMH)

- Assume 125 GeV particle is heavy CP-even Higgs boson
- **m**_A=110GeV, tan β =6.2, μ =1.7TeV : production rates for H is at least 90% of SM

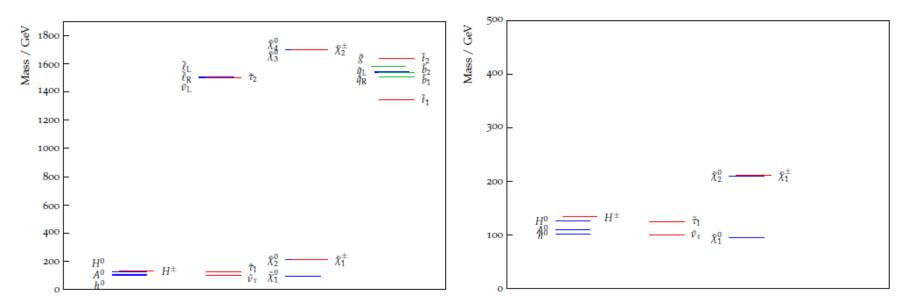


Figure 11: Left: Full spectrum of the lowMH benchmark. Right: Zoom into the spectrum below 500 GeV.

ν ↓*τ* is NLSP(101GeV) and *τ* is126GeV. Both of them contribute to a sufficiently high co-annihilation for the observed relic density.
 τ decays 100% to *τ*+*ν*↓*τ*, *ν*↓*τ* decays invisibly(*ν*↓*τ*+*χ*↓170).
 ν↓*τ* mass measurement is important for cosmological measurement.
 Light CP-even higgs: 103 GeV. low cross section and escape LEP detection.
 *M*_A=110GeV, *M*_{H±}=134 GeV. Due to low tanβ, they are difficult to detect at LHC.
 Akiya Miyamoto, Friday Meeting
 15

Conclusion

- Good motivation to SUSY despite non-observation at LHC8.
- SUSY : area of many speculation
- which model do you bet ?