Higgs Recoil Mass & Cross Section

General Meeting vol.5

2014.1.18

Motivation

- My target is precise measurement of Higgs mass and cross section using DBD samples(m_H=125[GeV]).
- I use only ee -> Zh -> IIh ($I=\mu$, e) of $E_{CM}=250$ [GeV] signal event.

Lepton Selection

- Muon (and electron) selection
 - Momentum p > 15 [GeV]
 - Small (Large) energy deposite in caloriemeters
 - $E_{ecal} / E_{total} < 0.5 (> 0.6)$
 - $E_{total} / p_{track} < 0.3 (> 0.9)$
- Good track selection
 - Track with small error (different selections between polar angle of tracks, barrel or end cap)

```
dp / p^2 < 2.5 \times 10^{-5} \oplus 8 \times 10^{-4} / p (for \cos \theta < 0.78) dp / p^2 < 5 \times 10^{-4} (for \cos \theta > 0.78)
```

- Impact parameter (only for muon)
 - To suppress muons from tau decays which tend to have large impact parameters.

$$D_0 / dD_0 < 5$$

Bremsstrahlung Recovery

• Only for eeX channel cross section measurements, the photon's 4 momentum around final state electron ($\cos\theta > 0.999$) is added to the electron.

This process contributes the distribution of recoil mass significantly.

For mass analysis, it is effective not to perform the recovery.

Background Rejection (μμΧ)

mmh	signal		mmnn		mmff		tlnn		tlff		others	
No Cut	2574		149636		160432		596518		83418		~10M	•
Selection	2271	88.21%	12467	8.33%	7864	4.90%	3010	0.50%	28	0.03%	14649	0.14%
p _{Tdl}	2160	83.89%	10653	7.12%	6799	4.24%	2706	0.45%	27	0.03%	8907	0.09%
M _{dl}	2050	79.65%	6458	4.32%	5901	3.68%	1404	0.24%	19	0.02%	7518	0.07%
асор	1916	74.43%	6078	4.06%	5370	3.35%	1290	0.22%	11	0.01%	6637	0.06%
dp _{Tbal}	1871	72.70%	5949	3.98%	4965	3.09%	1267	0.21%	11	0.01%	927	0.01%
cosq _{missing}	1859	72.22%	5949	3.98%	4705	2.93%	1267	0.21%	11	0.01%	682	0.01%
M _{recoil}	1856	72.10%	3987	2.66%	2643	1.65%	882	0.15%	11	0.01%	453	0.00%
Likelihood	1564	60.77%	2401	1.60%	1734	1.08%	333	0.06%	0	0%	350	0.00%

Background Rejection (eeX)

eeh	signal		eenn		eeff		tlnn		tlff		others	
No Cut	2701		145891		184568		596518		60970		~10M	
Selection	1924	71.23%	12771	8.75%	8076	4.38%	11996	2.01%	273	0.45%	75814	0.74%
p _{Tdl}	1874	69.39%	11470	7.86%	7175	3.89%	11213	1.88%	196	0.32%	51342	0.50%
M _{dl}	1729	64.01%	6649	4.56%	5243	2.84%	6142	1.03%	122	0.20%	31762	0.31%
асор	1614	59.75%	6339	4.35%	4790	2.60%	5516	0.92%	83	0.14%	25227	0.25%
dp _{Tbal}	1552	57.46%	6038	4.14%	4094	2.22%	5300	0.89%	73	0.12%	7195	0.07%
cosq _{missing}	1543	57.13%	6034	4.14%	3848	2.09%	5300	0.89%	72	0.12%	6489	0.06%
M _{recoil}	1523	56.39%	4242	2.91%	2294	1.24%	3997	0.67%	57	0.09%	4419	0.04%
Likelihood	1026	37.97%	1428	0.98%	840	0.46%	966	0.16%	2	0.00%	974	0.01%

Signal eff. each h decay mode(µµX)

Cut	bb	eff.	ww	eff.	gg	eff.	ττ	eff.	СС	eff.
No Cut	1513		550		220		169		71	
selection	1334	88.1%	486	88.3%	193	87.5%	151	89.5%	63	88.2%
P _{Tdl}	1265	83.6%	460	83.6%	184	83.7%	142	84.0%	59	83.4%
M _{dl}	1200	79.3%	436	79.2%	176	79.8%	135	80.0%	55	77.1%
асор	1122	74.1%	408	74.1%	165	74.9%	127	75.1%	52	72.9%
dP _{Tbal}	1106	73.1%	400	72.7%	161	73.2%	119	70.5%	50	70.2%
cosq _{miss}	1099	72.6%	396	72.0%	160	72.9%	118	70.0%	50	70.2%
M _{recoil}	1096	72.4%	395	71.9%	160	72.8%	118	69.9%	50	70.2%
f _L	904	59.7%	323	58.8%	133	60.6%	98	58.1%	42	59.3%
Cut	ZZ	eff.	gg	eff.	Zg	eff.	SS	eff.	mm	eff.
No Cut	69		5		3		2		1	
selection	61	87.9%	5	95.5%	3	99.6%	1	87.8%	0	66.7%
P _{Tdl}	58	83.7%	5	91.3%	3	99.6%	1	75.5%	0	66.7%
M _{dl}	54	78.1%	5	87.0%	3	91.7%	1	75.5%	0	66.7%
асор	51	73.5%	5	86.8%	3	91.7%	1	62.6%	0	33.3%
dP _{Tbal}	50	72.5%	0	3.8%	2	83.9%	1	62.6%	0	33.3%
cosq _{miss}	50	71.9%	0	3.8%	2	69.0%	1	50.4%	0	33.3%
M _{recoil}	49	71.3%	0	3.8%	2	69.0%	1	50.4%	0	33.3%
f _L	40	58.1%	0	3.8%	2	59.4%	1	48.9%	0	33.3%

Signal eff. each h decay mode(eeX)

Cut	bb	eff.	ww	eff.	gg	eff.	ττ	eff.	СС	eff.
No Cut	1577		602		225		167		72	
selection	1118	70.9%	431	71.6%	162	72.0%	117	70.1%	48	67.0%
P_Tdl	1091	69.2%	419	69.6%	158	70.0%	115	68.9%	47	65.4%
M _{dl}	1010	64.1%	386	64.2%	147	65.0%	106	63.3%	44	61.1%
асор	939	59.6%	361	59.9%	137	60.9%	100	59.8%	41	57.1%
dP _{Tbal}	913	57.9%	346	57.4%	131	58.3%	92	55.1%	39	54.1%
cosq _{miss}	907	57.5%	344	57.1%	130	57.9%	92	54.8%	39	53.7%
M _{recoil}	898	57.0%	339	56.3%	128	57.0%	91	54.3%	38	52.8%
f _L	607	38.5%	226	37.5%	88	38.9%	60	36.0%	26	35.8%
Cut	ZZ	eff.	gg	eff.	Zg	eff.	SS	eff.	mm	eff.
No Cut	72		8		5		1		0	
selection	51	70.8%	6	75.9%	4	76.8%	1	79.4%	0	95.5%
P _{Tdl}	50	69.6%	6	75.9%	4	76.8%	1	79.4%	0	95.5%
M _{dl}	45	63.0%	6	73.1%	4	76.8%	1	79.4%	0	95.5%
асор	42	58.6%	5	61.8%	3	66.5%	1	60.3%	0	95.5%
dP _{Tbal}	41	56.3%	0	3.2%	3	53.3%	1	60.3%	0	95.5%
cosq _{miss}	41	56.3%	0	3.2%	3	53.3%	1	60.3%	0	95.5%
M _{recoil}	40	55.1%	0	3.2%	3	53.3%	1	58.7%	0	95.5%
f _L	25	34.9%	0	0.2%	3	52.2%	1	58.7%	0	95.5%

Fitting Method

- Fitting function
 - signal -> Gaussian Peak with Exponential Tail (GPET)

$$\begin{cases} Ne^{-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^2} \left(\frac{x-\bar{x}}{\sigma} < k\right) \\ N\left\{be^{-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^2} + (1-b)e^{-k\frac{x-\bar{x}}{\sigma}}e^{\frac{b^2}{2}}\right\} \left(\frac{x-\bar{x}}{\sigma} \ge k\right) \end{cases}$$

BG -> 3rd order polynomial

- * GPET has 5 parameters
 - ♦ height : N
 - \Rightarrow mean : \bar{x}

 - ♦ boundary : k

- Toy-MC study
 - The sum of signal and BG distributions are fitted with the functions above.
 - Make the toy-MC events according to the fitted functions.
 - Fit the distribution again with the same function by floating height and mean of GPET.

Result of Statistical Error

Cross section	mmh	eeh	Combined
MI	3.6%	5.2%	3.0%
semi-MI	3.0%	4.6%	2.5%
Mass	mmh	eeh	Combined
Mass MI	mmh 37MeV	eeh 122MeV	Combined 35MeV

... However, there are still some problems.

- Wide width of eeX recoil mass distribution.
- Especially for eeX channel, GPET may be not optimal function to fit.

About wide width of eeX study

- The recoil distribution of eeX channel has wider width than previous study because of too many bremsstrahlung recovery. (maybe)
- Plan for this problem.
 - Is it relevant to recovery photons partially to obtain sharper distribution?
 - Should I recovery only energy (momentum) of electron and scale momentum (energy) to make invariant mass m_e=0.511[MeV]?
 - Did I recovery photon splitted from electron in calorimeter?

Result of trial

- Using each scale method (recovery E and scale P, or reverse), the deviation from black distribution seems to be small.
- Splitted photon may be very rare (0.7%) so that reconstruction to not recovery such photons seems to be also almost same as black one.

Trial of scale method

Trial to not use split

About fitting method

- Especially for eeX channel, GPET may be not optimal to fit recoil mass distribution (?).
- Should I try Kernel Estimation which is fitting method used in previous study?

Summary and Next Plan

- While statistical errors are obtained, there are some problems to investigate.
 - It is necessary to find cause of wide width of eeX channel.
 (Is there no cause? Partial recovery is optimal?)
 - Fitting method may be able to be optimized. (Kernel Estimation)