

HIGGS SELF COUPLING ANALYSIS USING THE EVENTS CONTAINING H→WW* DECAY

Masakazu Kurata, Tomohiko Tanabe The University of Tokyo Junping Tian, Keisuke Fujii KEK Taikan Suehara

Kyushu University

01/18/2014

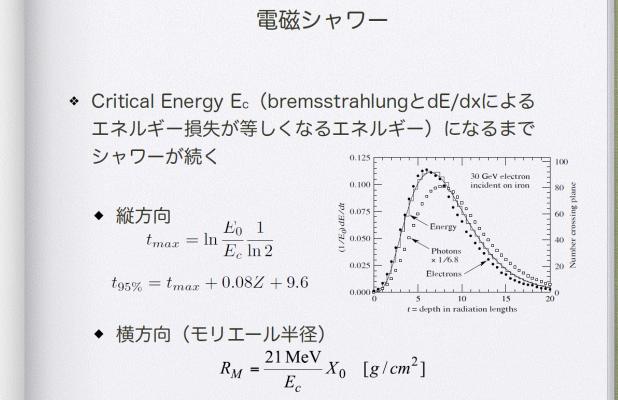
BUT.... THE TALK IS

TRYING TO STUDY THE TRACK PROPERTY & STATUS OF SOME IDEA FOR THE IMPROVEMENT

Masakazu Kurata

01/18/2014

FOR BETTER ANALYSIS AND RESULT

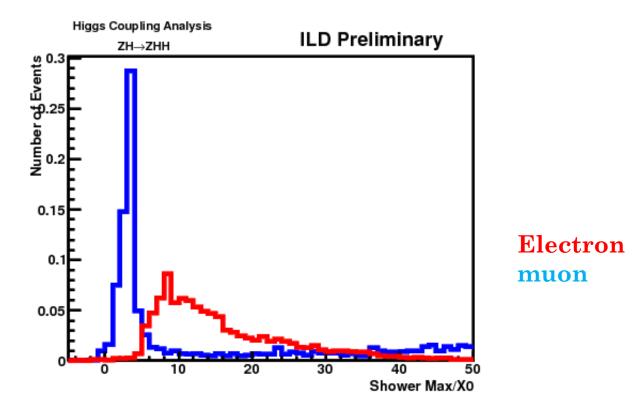

• So far, all the analyses are going on extensively

- Using all the variables which can be obtained within the present framework as many as possible
- So, the analyses results are saturated within the uncertainty of the variables(e.g. energy resolution, momentum resolution, etc)
- Also, analysis technique is limited due to the variables obtained
- Need to explore details of the track properties
 - There is room to get some fundamental variables for particle ID
 - Using them gives the improvement for the analysis?
 - Especially, lepton ID improvement It must be!
 - Good for jet clustering, b-tagging, etc. ?
- Introducing some idea is also necessary
 - Going to MVA technique
 - Lepton ID
 - Of course for background rejection
 - Other idea?

SHOWER PROFILE STUDY

SHOWER PROFILE EXTRACTION • Very basic idea to characterize a shower profile:

- Variables:
 - Shower max(longitudinal)
 - Expected shower max when the track is electron
 - Absorption length(transverse)

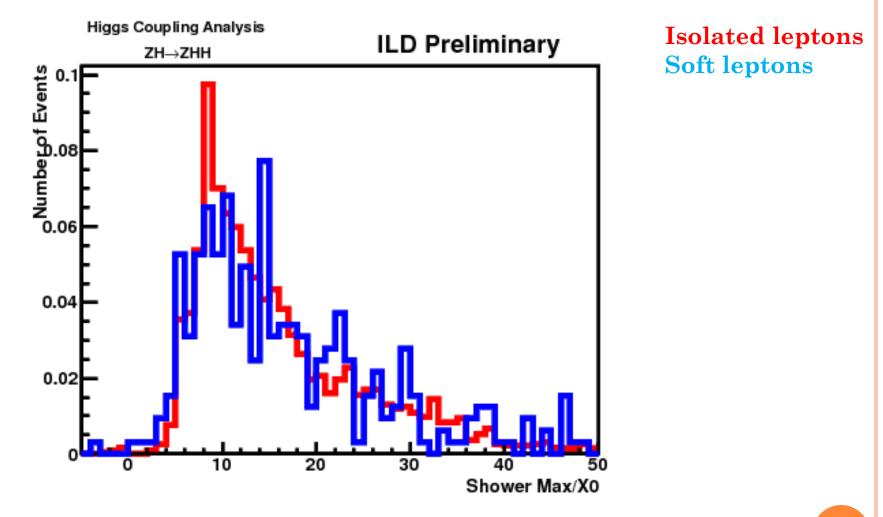

STRATEGY FOR SHOWER PROFILE EXTRACTION

- Fitting the function to the cluster shower shapeFit function:
 - $f(xl,xt) = a(xl xl_0)^b \exp(-c(xl xl_0)) \exp(-d \cdot xt)$
 - xl: longitudinal position of the calorimeter hit
 - xt: transverse position of the calorimeter hit
 - xl₀: shift the function
 - a: amplitude
 - 1/d: absorption length

• Expected shower max when the track is electron:

- $showerMax = \frac{1}{\log(2)} \cdot \log(\frac{Emax}{Ec})$ (strange?)
- $E_c = 0.021 X 0 / Rm (GeV)$

FIRST TRY TO SHOWER PROFILE STUDY • Checking with electron-like and muon-like tracks



- Shower max: looks ok?
- Other variables: can't show... need to correct

• Tendency is ok, but something wrong...

FIRST TRY TO SHOWER PROFILE STUDY

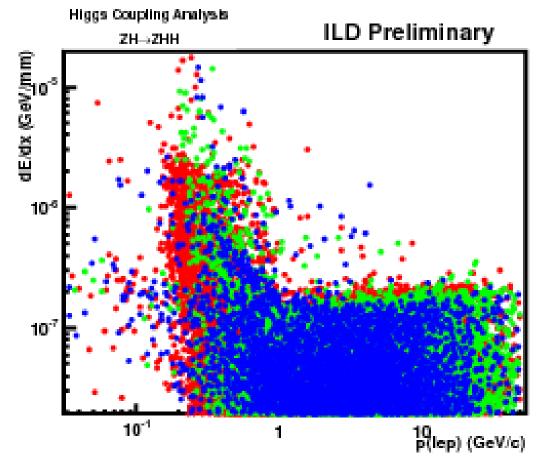
• Checking with Isolated lepton vs. fake leptons

• Need more study...

DE/DX STUDY

9

DE/DX EXTRACTION


- Using the hit points in the trackers
- Now, using very simple criteria to obtain dE/dx:
 - $\frac{dE}{dE} = \frac{total \ energy \ deposite \ of \ all \ the \ hit \ points}{dE}$
 - $\frac{dx}{dx}$ total length between the hit points
- Watching the momentum dependence
 - Can see the Bethe-Bloch line?
 - Looking good for the $\pi/K/p$ separation?
- Now, doesn't consider silicon or TPC

DE/DX

• Can see something ~0.1-1GeV/c????

• Looking bad for separation of the particles

• Need some treatment and something

Pion Kaon Proton

PROBLEMS

- Shower profile
 - Radiation length& Moliere length??
 - Necessary to check EM&HAD independently?
 - Good way to fit? (fitting is the good way?)

o dE/dx

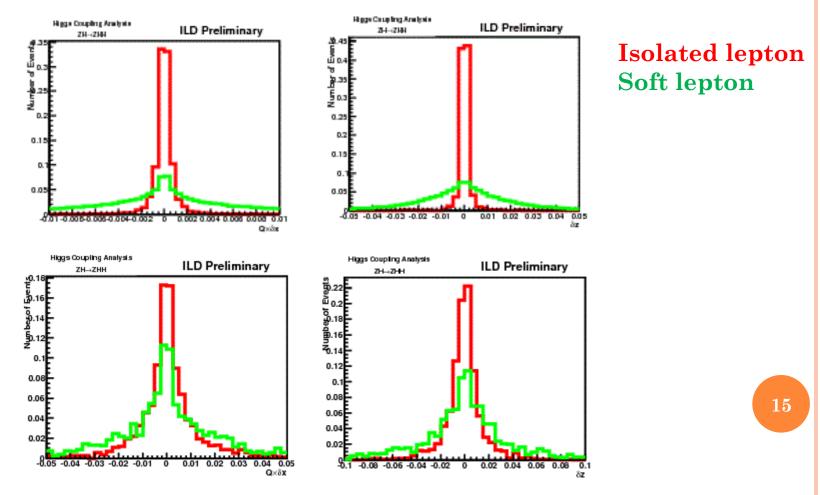
- correct dE/dx calculation
- Necessary to check silicon&TPC independently?
- But, I can do anything and pass the results to the DST file
 - I have only to know the correct way to get the track properties.
 - Need some advice and help of experts

LEPTON ID USING LIKELIHOOD

13

BASIC IDEA

• Lepton ID using likelihood is introduced:


- Lepton selection imposing just one cut
- Target is to find the leptons from W boson as Higgs daughter
 - In some case, lepton energy is so small
 - Form general lepton ID to make the analysis easier
 Want to apply it to Z lepton finding too
- Likelihood definition:
 - Isolated lepton likeliness

$$L = \frac{\prod s}{\prod s + \prod b},$$

s:pdfs of signal variables b:pdfs of background variables

INTRODUCE VARIABLES Variables are almost same as cut based:

- - E/P, EM/(EM+HAD), |d0|, |Z0|, cone energy
 - Using these variables as pdf
- Introduce new variables: 0
 - $Q \times \Delta x$, Δz distance between the cluster position and expected position when • tracks are extrapolated to the radius of the cluster position(Q is charge)

STATUS OF LEPTON ID

• Single lepton ID

• Set the operation point@ same signal eff.

type	signal	ttbar-lep+jets	ttbar - allhad
Cut based	98.4	71.4	7.9
Likelihood	98.1	70.3	3.1

• leptonID for $Z \rightarrow ll$

type	ttbar – lep+jets	ttbar - dilepton
Cut based	0.79	17.3
Likelihood	0.59	18.9

- Slightly good
- Need to optimize the operation point

SUMMARY

- Trying to extract track properties:
 - dE/dx
 - Shower profile
- Lepton ID using likelihood
 - Some improvement achieved
- Todo & Prospects:
 - More study for track properties
 - Introducing some idea
 - Bayesian technique for jet pairing trying soon
 - Bayesian technique for jet clustering?
 - Jet energy correction?
 - B-tagging categorizing strategy

