Present and future constraints on top EW couplings

Workshop on Top physics at the LC 5-6 March 2014 LPNHE Paris

Introduction

- □ In composite models which comprise e.g. extra-dimensions (RS), Little Higgs (LH), one expects a proeminent part for the top quarks
- Predictions on possible deviations for top EW couplings span a large range from a few %, only visible with ILC, up more to several 10% observable at LHC
- In this talk, I will indicate how LEP/Tevatron/ SLC constraints already tell us what one can realistically expect to observe

A. Juste et al. hep-ph/0601112

A surprising plot

Origin of these constraints

- Recall that if one modifies the fermion EW couplings the SM loops becomes UV divergent and this requires introducing a cutoff Λ~TeV to compute these contributions
- Given this cutoff the top EW couplings anomalies are limited by LEP/SLD measurements

Explicit formulae

A. Larios et al. hep-ph/9704288

$$\delta \mathbf{e}_{1} = \frac{3m_{t}^{2}G_{F}}{2\sqrt{2}\pi^{2}} \left[\kappa_{R}^{NC} - \kappa_{L}^{NC} + \kappa_{L}^{CC} - \left(\kappa_{R}^{NC}\right)^{2} - \left(\kappa_{L}^{NC}\right)^{2} + \left(\kappa_{L}^{CC}\right)^{2} + 2\kappa_{R}^{NC}\kappa_{L}^{NC} \right] \ln \frac{\Lambda^{2}}{m_{t}^{2}}$$

$$\delta \mathbf{e}_{b} = \frac{m_{t}^{2} G_{F}}{2\sqrt{2}\pi^{2}} \left(\kappa_{L}^{NC} - \frac{1}{4} \kappa_{L}^{NC} \right) \left(1 + 2\kappa_{L}^{CC} \right) \ln \frac{\Lambda^{2}}{m_{t}^{2}}$$

$$\begin{split} \mathbf{L} &= \frac{g}{2c_{W}} \left(1 - \frac{4s_{W}^{2}}{3} + \kappa_{L}^{NC} \right) \overline{t_{L}} \gamma^{\mu} t_{L} Z_{\mu} + \frac{g}{2c_{W}} \left(-\frac{4s_{W}^{2}}{3} + \kappa_{R}^{NC} \right) \overline{t_{R}} \gamma^{\mu} t_{R} Z_{\mu} \\ &+ \frac{g}{\sqrt{2}} \left(1 + \kappa_{L}^{CC} \right) \overline{t_{L}} \gamma^{\mu} b_{L} W_{\mu}^{+} + \frac{g}{\sqrt{2}} \left(1 + \kappa_{L}^{CC*} \right) \overline{t_{L}} \gamma^{\mu} b_{L} W_{\mu}^{-} \end{split}$$

If one assumes that charged currents are SM κ^{cc} = 0 then at lowest order □₁~κ^{NC}_R −κ^{NC}_L ~axial term for Ztt F1AZ is tightly constrained

A not surprising plot

Gauge invariance

JA Aguilar et al. hep-ph/012037

Gauge invariance relates ZtLtL to WtLbL and ZbLbL

$$\kappa_{bL}^{NC} + \kappa_{tL}^{NC} \square \kappa_{tL}^{NC} = 2\kappa_{tLbL}^{CC}$$

- \square From LEP1 we know that ZbLbL has no anomaly meaning that $\frac{\delta WtLbL}{WtLbL} \square \ 0.72 \frac{\delta ZtLtL}{ZtLtL}$
- $\ \square$ $\delta\square_1$ and $\delta\square_b$ only depend on neutral couplings ZbLbL and ZbRbR
- \square Loop contributions therefore fully constrain ZtLtL and ZtRtR and the only freedom left comes from BSM compensating contributions to \square_1 and \square_b

Example of models

Constraints

- □ Take $|\delta \square_1/\square_1|$ and $|\delta \square_b/\square_b|$ <1.5 and Λ =1 TeV
- A wide range is allowed for dtR/tR while dtL/tL is restricted
- Most models (after some 'educated choices') are consistent with these constraints
- A few are at the edge meaning that they need a large BSM compensating loop contribution

Close up

q W^+ \bar{q} s-channel

In detail

Model	dtR/tR %	dtL/tL %	dtLbL/tLbL %	d□ _b /□ _b	$d\Box_{\mathbf{1/}}\Box_{1}$	dσZtt/σZtt %
Carena	0	-20	-14	0.8	1.1	-30
Djouadi	-330	0	0	-1.4	1.1	70
Gherghetta	-20	-20	-14	0.7	2.1	-36
Grojean	0	10	7	-0.4	-1.0	17
Hosotani	18	-7	-5	-0.4	-0.8	-5
Little Higgs	0	-15	-10	0.6	1.0	-23
Pomarol	0	-25	-17	1.0	1.2	-37
Wulzer 1	25	25	17	-1.1	5.8	56
Wulzer 2	-10	-10	-7	0.4	1.3	-20

W^+ W^+ Z^0 W^+ Z^0 T,T^+,T^-,t

Lessons

- Loop constraints have allowed to trim most of the models (Djouadi and LH had a priori a wide range)
- Most of the proposed models need large BSM contributions to compensate loop contributions meaning, e.g. for LH, that new particles like heavy vector quarks could be discovered at LHC14
- While some of these models could be tested at LHC by measuring single top production or the Ztt production, it will take ILC for a conclusive test of the various scenarios
- Disentangling of tL and tR is essential to separate models (difficult at LHC)

Comparisons

Coupling errors	ILC	LHC 300 fb-1
δZtLtL/ZtLtL	0.6%	-66% 15%
δZtRtR/ZtRtR	1.4%	-100% 148%
δγtLtL/γtLtL	0.24%	-7% 12%
δγtRtR/γtRtR	0.24%	-7% 12%

ne 2013 13

Conclusions

- Loop contributions + gauge invariance allows to put very useful restrictions on Wtb and Ztt coupling deviations
- Some models require large compensating loops which implies light vector quarks
- Single top and σ_{Ztt} from LHC still in infancy but in the future could indicate significant deviations
- □ The same mechanisms operate for the **Higgs sector**
- ILC will be a key instrument to fully elucidate the underlying top and Higgs physics and reach the highest sensitivity

Higgs sector

- The same mechanism is at work when Higgs couplings deviate from SM, compensating contributions are needed to satisfy the LEP/SLC constraints
- Without these compensations hZZ coupling could not give significant deviations measurable at LHC or even at ILC
- Quantatively one can write:

$$T = -\frac{3}{16\pi c_W^2} (1 - \kappa_V^2) \log \frac{\Lambda^2}{M_H^2} \qquad S = \frac{1}{12} (1 - \kappa_V^2) \log \frac{\Lambda^2}{M_H^2}$$

with $\kappa v = 1$ for the SM case

 \square A compensating term dT=0.2 allows to have $\kappa^2 v = 0.7$ perfectly measurable at a LC

Higgs couplings

$$T = -\frac{3}{16\pi c_W^2} (1 - \kappa_V^2) \log \frac{\Lambda^2}{M_H^2} \quad S = \frac{1}{12} (1 - \kappa_V^2) \log \frac{\Lambda^2}{M_H^2}$$

17

The RS solution for AFBb

Main formulas

$$\frac{dR_{Z}}{R_{Z}} = \left(\frac{M_{Z}}{0.4M_{KK}}\right)^{2} \left[1 + \frac{\frac{3}{4}\left(1 - \frac{4}{3}\sin^{2}\theta'\right)}{\sin^{2}\theta'\cos^{2}\theta'}\right] F(c_{tR}) + \frac{s}{s - M_{KK}^{2}} Q(e)Q(c_{tR})$$

$$\frac{dL_{\rm Z}}{L_{\rm Z}} = \left(\frac{M_{\rm Z}}{0.4M_{\rm KK}}\right)^2 \left[1 - \frac{1}{4\cos^2\theta}\right] F(c_{\rm tL}) + \frac{s}{s - M_{\rm KK}^2} Q(e)Q(c_{\rm tL})$$

$$\frac{dR_{\gamma}}{R_{\gamma}} = \frac{s}{s - M_{\gamma KK}^2} Q(e)Q(c_{tR})$$

$$\frac{dL_{\gamma}}{L_{\gamma}} = \frac{s}{s - M_{\gamma KK}^2} Q(e) Q(c_{tL})$$

- Can be fully solved with ILC measurements
- Determining Mkkrequires running at 2energies
 - F(ctR)/F(cbR)~30 close to mt/mb as one would expect in RS
 - Possibly additional terms due to quark mixing

arXiv:1304.3594

CMS result on ttZ

Single top

experiment	Vtb		
CDF	0.92+0.10-0.08		
D0	1.12+009-0.08		
CMS	1.03+-0.12±0.04(th)		
ATLAS	1.04+.10-0.11		