

Olivier Mattelaer Université Catholique de Louvain

for the MadGraph/aMC@NLO team Full list of contributors: http://amcatnlo.web.cern.ch/amcatnlo/people.htm

Top Physics at Linear Collider

O. Mattelaer, Top Physics at Linear Collider

MadGraph

- Diagram generator in python.
- returns code to compute matrix-element based on the Helicity Amplitude formalism

- Diagram generator in python.
- returns code to compute matrix-element based on the Helicity Amplitude formalism
- Various output format
 - MadEvent: Leading-order cross-section and event generation
 - aMC@NLO: NLO cross-section and event generation (matched to the shower)
 - Pythia8: export the matrix element inside the pythia8 framework
 - ➡ Tools: MadSpin, MadWeight, MadDM, ...

Core news

- Lots of speedups and improvements, including
 - Huge speedup of gridpacks
 - vast speedup for long deco sins with multiperficie decays

- Huge i

Completely automated simulations at nextto-leading order in QCD, matched to shower, now public (aMC@NLO in v. 2.0.0)!

- Complex muss scheme
- Feynman gauge

ptv 3/2

- Handling of negative weights
- On-the-fly body decay width calculations ("Auto width")

BSM

NFO = Universal Feynrules Output

New Model Format

□ Gosam/Herwig++/MG5

Fully generic color/Lorentz/...

[Degrande et al, arXiv:1108.2040]

 Automatic Creation of HELAS routine for ANY BSM theory
 Fortran / C++/Python

[OM et al, arXiv: 1108.2041]

ALOHA

ALOHA Google translate

From: UFO 🔽 🔄 To: Helicity

Translate

Type text or a website address or translate a document.

a bah incine and marks

WESLEY J. CHUN

Any BSM should be possible in a fully automatic and efficient way!

Some restriction applies:

- Only local theory
- Theory should respect CPT and lorentz invariance (all indices should be contracted)
- Color supported up to dimension 8 (including sextet and epsilon structure)
- Spin supported up to spin 2 (including spin3/2)
- No four fermion interaction with fermion-flow violation / majorana in the same model

MG5_aMC

Tools	Иtílíty	Progress
MadAnalysís5	Plotting distributions	Released

[E.Conte, B. Fuks: CPC 184 (2013) 222-256]

O. Mattelaer, Top Physics at Linear Collider

Tools	Utility	Progress	
MadAnalysís5	Plotting distributions		Released
MadWidth	Automatic width co	mputation	Released
2-body deco	iy N-b	ody decay	
FeynRules 🛛 New diagram		generator	
a priori estimat channel of inte		atíon of each tegratíon	
	Very FAS		

[J.Alwall, C.Duhr, B.Fuks, OM, D.Ozturk, CH Shen arXiv:1402.1178]

Tools	utility	Progress
MadAnalysís5	Plotting distributions	Released
MadWidth	Automatic width computation	Released
MadSpín	Decay with full (LO) spin- correlation	Released

[P. Artoisenet, R. Frederix, OM, R. Rietkerk: 1212.3460]

Tools	utility	Progress		
MadAnalysís5	Plotting distributions	Released		
MadWidth	Automatic width computation	Released		
MadSpín	Decay with full (LO) spin- correlation	Released		
Tan Decay	Effective Theory for exact tau-decay with full spin-correlation	Released		
p_{i} p_{i				
[Hagiwara, Li, Mawatari, Nakamura EPJC742489]				

Tools	utility	Progress
MadAnalysís5	Plotting distributions	Released
MadWidth	Automatic width computation	Released
Madspín	Decay with full (LO) spin- correlation	Released
Tau Decay	Effective Theory for exact tau-decay with full spin-correlation	Released
Reweight Module	Re-weigthing Module for multiple theoretical hypotheses	Released*

 $W_{new} = |M_{new}|^2 / |M_{old}|^2 * W_{old}$

[OM]

Tools	utility	Progress
MadAnalysís5	Plotting distributions	Released
MadWidth	Automatic width computation	Released
Madspín	Decay with full (LO) spin- correlation	Released
Tau Decay	Effective Theory for exact tau-decay with full spin-correlation	Released
Reweight Module	Re-weigthing Module for multiple theoretical hypotheses	Released*
MadDM / MadWeigth/	Relic density/Matrix Element Method/	

aMC@NLO: A Joint Venture

O. Mattelaer, Top Physics at Linear Collider

MadGraph

aMC@NLO

- Why automation?
 - Time: Less tools, means more time for physics
 - Robust: Easier to test, to trust
 - Easy: One framework/tool to learn

aMC@NLO

- Why automation?
 - Time: Less tools, means more time for physics
 - Robust: Easier to test, to trust
 - Easy: One framework/tool to learn
- Why NLO?
 - Reliable prediction of the total rate
 - Reduction of the theoretical uncertainty

aMC@NLO

- Why automation?
 - Time: Less tools, means more time for physics
 - Robust: Easier to test, to trust
 - Easy: One framework/tool to learn
- Why NLO?
 - Reliable prediction of the total rate
 - Reduction of the theoretical uncertainty
- Why matched to the PS?
 - Parton are not an detector observables
 - Matching cure some fix-order ill behaved observables

NLO Basics

Currently only for the SM and NLO in QCD

Pair Higgs Production

[Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro (2014)]

S

Results:

Double Higgs

P Single	Process Higgs production	Syntax	Cross section (pb) NLO 13 TeV		F	Proc
	$m \rightarrow H$ (HEFT)	n n > h			Higgs	s pa
g.1 g.2	$pp \rightarrow Hj (\text{HEFT})$ $pp \rightarrow Hj (\text{HEFT})$	p			h.1	pp
g.3	$pp \rightarrow Hjj$ (HEFT)	p p > h j j			h.2	pp
g.4	$pp \rightarrow Hjj$ (VBF)	p p > h j j \$\$ w+ w- z	$1.900 \pm 0.006 \cdot 10^{0} {}^{+0.8\%}_{-0.9\%} {}^{+2.0\%}_{-1.5\%}$		h.3	pp
g.5	$pp \rightarrow Hjjj \ (VBF)$	pp>hjjj\$\$ w+ w- z	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		h.4	pp
g.6	$pp \rightarrow HW^{\pm}$	p p > h wpm	$1.419 \pm 0.005 \cdot 10^{0}$ $^{+2.1\%}_{-2.6\%}$ $^{+1.9\%}_{-1.4\%}$		h.5	pp
g.7	$pp \rightarrow HW^{\pm} j$	p p > h wpm j	$4.842 \pm 0.017 \cdot 10^{-1} + 3.6\% + 1.2\% \\ -3.7\% - 1.0\% + 5.0\% + 0.9\%$		h.6	p_P
g.8*	$pp \rightarrow HW^{\perp} jj$	pp>hwpmjj	$1.574 \pm 0.014 \cdot 10^{-1} \begin{array}{c} + 0.017 \\ - 6.5\% \\ - 0.6\% \end{array}$			
g.12	$pp \rightarrow HZ$	p p > h z	$7.674 \pm 0.027 \cdot 10^{-1}$ $^{+2.0\%}_{-2.5\%}$ $^{+1.9\%}_{-1.4\%}$			
g.13 g.14*	$pp \rightarrow HZ j$ $pp \rightarrow HZ ii$	pp>hzj pp>hzii	$2.667 \pm 0.010 \cdot 10^{-1} + 3.6\% - 0.9\%$ 8 753 + 0.037 + 10 ⁻² + 4.8% +0.7%			
g.14	$pp \rightarrow 11 \ge jj$	ррупгуј	-6.3% - 0.6%			
g.15* g.16*	$pp \rightarrow HW^+W^-(4flav)$	p p > h w + w -	$1.065 \pm 0.003 \cdot 10^{-2}$ -1.9% -1.5% 3 300 \pm 0.011 $\cdot 10^{-3}$ $+2.7\%$ $+1.7\%$			
g.10 $g.17^*$	$pp \rightarrow HZW^{\pm}$	pp>hzwpma pp>hzwpm	$5.309 \pm 0.011 \cdot 10 = -2.0\% = -1.4\%$ $5.292 \pm 0.015 \cdot 10^{-3} = +3.9\% + 1.8\%$			
g.18*	$pp \rightarrow HZZ$	pp>hzz	$2.538 \pm 0.007 \cdot 10^{-3} \qquad \begin{array}{c} -3.1\% \\ +1.9\% \\ -1.4\% \\ -1.4\% \\ -5\% \end{array}$	V -		
g.19	$pp \mathop{\rightarrow} Ht\bar{t}$	p p > h t t \sim	4.608 ± 0.0 $\cdot 10^{-1}$ $-\frac{\%}{0\%}$ $+\frac{1}{-2}$	·		
g.20	$pp \rightarrow Htj$	p p > h tt j			Process	
g.21	$pp \rightarrow H bb$	p p > h b b \sim		Vect	or-boso	n pa
g.22	$pp \rightarrow Ht\bar{t}j$	p p > h t t \sim j	$3.244 \pm 0.025 \cdot 1^{-1} {}^{+3.5\%}_{-8.7\%} {}^{+2.5\%}_{-2.9\%}$	b.1	pp-	$\rightarrow W$
g.23*	$pp \rightarrow Hbbj$	p p > h b b \sim j	-	b.2	nn –	$\rightarrow Z$

Single Higgs

	•				
Pair	ot	heavy	U	uar	<

Р	rocess Single-top	Syntax	Cross section (pb) NLO 13 TeV
f.1	$pp \rightarrow tj$ (t-channel)	p p > tt j \$\$ w+ w-	$\begin{array}{ccccc} 1.563 \pm 0.005 \cdot 10^2 & +1.4\% & +0.4\% \\ -1.8\% & -0.6\% \\ 1.017 \pm 0.003 \cdot 10^0 & +1.3\% & +0.8\% \\ 6.993 \pm 0.021 \cdot 10^{-1} & +1.6\% & +0.9\% \\ -1.1\% & -0.9\% \end{array}$
f.2	$pp \rightarrow t\gamma j$ (t-channel)	p p > tt a j \$\$ w+ w-	
f.3	$pp \rightarrow tZj$ (t-channel)	p p > tt z j \$\$ w+ w-	
f.4*	$\begin{array}{l} pp \rightarrow tjj \mbox{ (t-channel)} \\ pp \rightarrow t\gamma jj \mbox{ (t-channel)} \\ pp \rightarrow tZjj \mbox{ (t-channel)} \end{array}$	p p > tt j j \$\$ w+ w-	POLES DO NOT CANCEL
f.5*		p p > tt a j j \$\$ w+ w-	POLES DO NOT CANCEL
f.6*		p p > tt z j j \$\$ w+ w-	POLES DO NOT CANCEL
f.7	$pp \rightarrow tbj$ (t-channel)	p p > tt bb j \$\$ w+ w-	$\begin{array}{cccc} 1.319\pm 0.003\cdot 10^2 & +5.8\% & +0.4\% \\ & -5.2\% & -0.5\% \\ 8.612\pm 0.025\cdot 10^{-1} & +6.2\% & +0.8\% \\ & -6.6\% & -0.9\% \\ 5.657\pm 0.014\cdot 10^{-1} & +7.7\% & +0.9\% \\ & -7.9\% & -0.9\% \end{array}$
f.8*	$pp \rightarrow tbj\gamma$ (t-channel)	p p > tt bb j a \$\$ w+ w-	
f.9*	$pp \rightarrow tbjZ$ (t-channel)	p p > tt bb j z \$\$ w+ w-	
f.10 f.11* f.12*	$pp \rightarrow tb$ (s-channel) $pp \rightarrow tb\gamma$ (s-channel) $pp \rightarrow tbZ$ (s-channel)	$\begin{array}{l} p \ p \ > \ w^+ \ > \ t \ b\sim, \ p \ p \ > \ w^- \ > \ t\sim \ b \\ p \ p \ > \ w^+ \ > \ t \ b\sim \ a, \ p \ p \ > \ w^- \ > \ t\sim \ b \ a \\ p \ p \ > \ w^+ \ > \ t \ b\sim \ z, \ p \ p \ > \ w^- \ > \ t\sim \ b \ z \end{array}$	$\begin{array}{cccc} 1.001 \pm 0.004 \cdot 10^{1} & +3.7\% & +1.9\% \\ -3.9\% & -1.5\% \\ 1.952 \pm 0.007 \cdot 10^{-2} & +2.6\% & +1.7\% \\ 1.539 \pm 0.005 \cdot 10^{-2} & +3.9\% & +1.9\% \\ -3.2\% & -1.5\% \end{array}$

Process	Syntax	Cross section (pb)
Higgs pair production		NLO 13 TeV
h.1 $pp \rightarrow HH$ (HEFT)	p p > h h	
h.2 $pp \rightarrow HHjj$ (VBF)	p	
h.3 $pp \rightarrow HHW^{\pm}$	p p > h h wpm	$5.002 \pm 0.014 \cdot 10^{-4} {}^{+1.5\%}_{-1.2\%} {}^{+2.0\%}_{-1.6\%}$
h.4 $pp \rightarrow HHZ$	p p > h h z	$3.130 \pm 0.008 \cdot 10^{-4} {}^{+1.6\%}_{-1.2\%} {}^{+2.0\%}_{-1.5\%}$
h.5 $pp \rightarrow HHt\bar{t}$	p p > h h t t \sim	$7.301 \pm 0.024 \cdot 10^{-4} {}^{+1.4\%}_{-5.7\%} {}^{+2.2\%}_{-2.3\%}$
h.6 $p_{p} \rightarrow H I t j$	p p > h h tt j	

Double Gauge

P1 Vector	rocess r-boson pair +jets	Syntax	Cross section (pb) NLO 13 TeV
b.1 b.2 b.3 b.4 b.5 b.6	$pp \rightarrow W^+W^- (4f)$ $pp \rightarrow ZZ$ $pp \rightarrow ZW^{\pm}$ $pp \rightarrow \gamma \gamma$ $pp \rightarrow \gamma Z$ $pp \rightarrow \gamma W^{\pm}$	p p > w + w - $p p > z z$ $p p > z wpm$ $p p > a a$ $p p > a z$ $p p > a wpm$	$\begin{array}{rrrr} 1.028\pm 0.003\cdot 10^2 & +4.0\% & +1.9\% \\ & -4.5\% & -1.4\% \\ 1.415\pm 0.005\cdot 10^1 & +3.1\% & +1.8\% \\ & -3.7\% & -1.4\% \\ 4.487\pm 0.013\cdot 10^1 & +4.4\% & +1.7\% \\ 6.593\pm 0.021\cdot 10^1 & +17.6\% & +2.0\% \\ & -18.8\% & -1.9\% \\ 3.695\pm 0.013\cdot 10^1 & +5.4\% & +1.8\% \\ 7.124\pm 0.026\cdot 10^1 & +9.7\% & +1.5\% \\ & -9.9\% & -1.3\% \end{array}$
b.7 b.8 b.9 b.10 b.11* b.12*	$\begin{array}{l} pp \rightarrow W^+W^-j \ (\mathrm{4f}) \\ pp \rightarrow ZZj \\ pp \rightarrow ZW^{\pm}j \\ pp \rightarrow \gamma\gamma j \\ pp \rightarrow \gamma Zj \\ pp \rightarrow \gamma W^{\pm}j \end{array}$	p p > w+ w- j p p > z z j p p > z wpm j p p > a a j p p > a z j p p > a wpm j	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
b.13 b.14 b.15 b.16 b.17 b.18 b.19* b.20*	$\begin{array}{c} pp \rightarrow W^+W^+jj\\ pp \rightarrow W^-W^-jj\\ pp \rightarrow W^+W^-jj \ (4f)\\ pp \rightarrow ZZjj\\ pp \rightarrow ZW^\pm jj\\ pp \rightarrow \gamma\gamma jj\\ pp \rightarrow \gamma Zjj\\ pp \rightarrow \gamma W^\pm jj \end{array}$	<pre>p p > w+ w+ j j p p > w- w- j j p p > w+ w- j j p p > z z j j p p > z wpm j j p p > a a j j p p > a z j j p p > a wpm j j</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

But No Loop Induce

Top-quark pair production at LC

top-pair production at LC

- e+ e- > t t~ [QCD]
 - ➡ 6.23e-01pb (250GeV+250GeV)
 - less than 60s computation
- e+ e- > W+ b W- b~ [QCD]
 - require complex mass scheme
 - ➡ 5.44998365e-01 pb
 - couple of hours
- e+ e- > b b~ mu- vm ta+ vt [QCD]
 - require complex mass scheme
 - ➡ 5.591e-3 pb
 - ➡ 3 days of running

first time computed

Offshell effect at NLO

- Diagrams with unstable particles present in general an imaginary part in the Dyson-ressumed propagator: $P(p) = [p^2 - m_0^2 + Pi(p^2)]^{-1}$
- Mixing of different perturbative orders breaks gauge invariance. Fine cancellations spoiled, leading to enhanced violation of unitarity
- No pole cancelation at NLO for fix-width scheme
- Solution: Complex Mass-Scheme: $M \rightarrow \sqrt{M^2 iM\Gamma}$,

$$c_W^2 = \frac{M_w^2 + iM_W\Gamma_W}{M_Z^2 + iM_Z\Gamma_Z}$$

Gauge dependence at LO

$ A ^2$ - Feynman-unitary /unitary	complex mass	fixed width
$e^+e^- ightarrow u \overline{u} d \overline{d}$	1.5334067678e-15	1.2312200197e-09
$u \overline{u} ightarrow u \overline{u} d \overline{d}$	2.0862057616e-16	2.7696013365e-10
$u \overline{u} ightarrow b \overline{b} e^+ u_e \mu^- u_\mu$ (real Yuk)	1.7934842084e-06	2.2832833007e-05
"(complex Yuk)	8.5986902303e-16	2.2832833007e-05

- Complex Mass Scheme restore gauge invariance
 - yukawa coupling must be promoted to complex parameter as well

Offshell effect at NLO

Conclusion

- MG5_aMC is
 - public
 - automatic
 - flexible
 - for LHC and LC
- For LO and NLO Generation
 - ➡ Full BSM at LO
 - New Physics coming at NLO
- Lot of tools
 - Automatic computation of the width
 - Decay with Full-Spin correlation
- This is only the beginning of this Tool!