MadGraph5/aMC@NLO

Olivier Mattelaer

Université Catholique de Louvain

for the MadGraph/aMC@NLO team

 Full list of contributors:http://amcatnlo.web.cern.ch/amcatnlo/people.htm

Plan

- MadGraph5

- aMC@NLO

- top pair production@NLO

From Theory to Detector

Lagrangian

FeynmanRules

matrix-element

parton events

shower/hadronize events

From Theory to Detector

Lagrangian

FeynmanRules

FeynRules (next talk)

MadGraph5_aMC@NLO
matrix-element
shower/hadronize events

Pythia
MadGraph5_aMC@NLO
parton events

Delphes
Detector events

From Theory to Detector

Lagrangian

FeynmanRules

What is MG5 aMC?

What is MG5 aMC?

- Diagram generator in python.

diagram $47 \quad Q C D=5, Q E D=4$

diagram 53 QCD=5, QED=4
diagram 56 QCD=5, QED=4

diagram 59 QCD=5, QED=4

diagram 54 QCD=5, QED=4

diagram 60 QCD=5, QED=4

diagram 73 QCD=5, QED=4

diagram $62 \quad$ QCD=5, QED=4

diagram 68 QCD=5, QED=4

diagram 74 QCD=5, QED=4

diagram 66 QCD=5, QED=4

diagram 69 QCD=5, QED=4

diagram 72 QCD=5, QED=4

What is MG5 aMC?

- Diagram generator in python.
- returns code to compute matrix-element based on the Helicity Amplitude formalism

What is MG5_aMC?

- Diagram generator in python.
- returns code to compute matrix-element based on the Helicity Amplitude formalism
- Various output format
- MadEvent: Leading-order cross-section and event generation
- aMC@NLO: NLO cross-section and event generation (matched to the shower)
\Rightarrow Pythia8: export the matrix element inside the pythia8 framework
= Tools: MadSpin, MadWeight, MadDM, ...

Core news

- Lots of speedups and improvements, including
- Huge speedup of gridpacks
- vast speadup for long deg. ins with multinanicle decays Hual i

Completely automated simulations at next-to-leading order in QCD, matched to shower, now public (aMC@NLO in v. 2.0.0)!

- complex doss scheme
- Feynman gauge
- Handling of negative weights
- On-the-fly body decay width calculations ("Auto width")

BSM

UFO = universal Feynrules output
(1) New Model Format

- Gosam/Herwig++/MG5
- Fully generic color/Lorentz/...
[Degrande et al, arXiv: I l 08.2040]
- Automatic creation of HELAS routine for ANY BSM theory
- Fortran/C++/Python

[OM et al, arXiv: I I 08.204 I]

ALOHA

ALOHA

Googte translate
From: [UFO T] \leftrightarrows To: Helicity Translate

Any BSM should be possible in a fully automatic and efficient way!

Some restriction applies:

- Only local theory
- Theory should respect CPT and lorentz invariance (all indices should be contracted)
- Color supported up to dimension 8 (including sextet and epsilon structure)
- \quad Spin supported up to spin 2 (including spin3/2)
- \quad No four fermion interaction with fermion-flow violation / majorana in the same model

MG5_aMC

Tools	Utility	Progress
MadAnalysis5	Plotting distributions	Released

[E.Conte, B. Fuks: CPC 184 (2013) 222-256]

Tools	Utility	Progress
MadAnalysis5	Plotting distributions	Released
MadWidth	Automatic width computation	Released

2-body decay
FeynRules

N-body decay

- New diagram generator
- a prior estimation of each channel of integration

Very FAST
L.Alwall, C.Duhr, B.Fuks, OM, D.Ozturk, CH Shew arXív:1402.11781

Tools	Utility	Progress
MadAnalysis5	Plotting distributions	Released
MadWidth	Antomatic width computation	Released
MadSpin	Decay with full (LO) spin- correlation	Released

[P. Artoisenet, R. Frederix, OM, R. Rietkerk: 1212.3460]

Tools	Utility	Progress
MadAnalysis5	Plotting distributions	Released
MadWidth	Automatic width computation	Released
Madspin	Decay with full (LO) spin- correlation	Released
Tan Decay	Effective Theory for exact tau-decay with full spin-correlation	Released

IHagíwara, Li, Mawatari, Nakamura EPJC74 2489]

Tools	Utility	Progress
MadAnalysis5	Plotting distributions	Released
MadWidth	Automatic width computation	Released
MadSpin	Decay with full (LO) spin- correlation	Released
TauDecay	Effective Theory for exact tau-decay with full spin-correlation	Released
Reweight	Re-weigthing Module for multiple Module	Released*

$$
\begin{gathered}
W_{\text {new }}=\left|M_{\text {new }}\right|^{2} /\left|M_{o l d}\right|^{2} * W_{\text {old }} \\
{[O M]}
\end{gathered}
$$

Tools	Utility	Progress
MadAnalysis5	Plotting distributions	Released
Madwidth	Automatic width computation	Released
MadSpin	Decay with full (LO) spin- correlation	Released
Tau Decay	Effective Theory for exact tau-decay with full spin-correlation	Released
Reweight Module	Re-weigthing Module for multiple theoretical hypotheses	Released*
MadDM/ Madweigth/...	Relic density/ Matrix Element Method/...	

aMC@NLO: A Joint Venture

aMC@NLO

- Why automation?
- Time: Less tools, means more time for physics
- Robust: Easier to test, to trust
- Easy: One framework/tool to learn

aMC@NLO

- Why automation?
- Time: Less tools, means more time for physics
- Robust: Easier to test, to trust
= Easy: One framework/tool to learn
- Why NLO?
- Reliable prediction of the total rate
- Reduction of the theoretical uncertainty

aMC@NLO

- Why automation?
- Time: Less tools, means more time for physics
- Robust: Easier to test, to trust
= Easy: One framework/tool to learn
- Why NLO?
- Reliable prediction of the total rate
- Reduction of the theoretical uncertainty
- Why matched to the PS?
- Parton are not an detector observables
- Matching cure some fix-order ill behaved observables

NLO Basics

$$
\sigma^{N L O}=\int_{m}^{\text {NLO }} d^{(d)} \sigma^{V}+\int_{m+1}^{\text {Rirtual }} d^{(d)} \sigma^{R}+\int_{m}^{\text {Real }} d^{(4)} \sigma^{B}
$$

Need to deal with singularities

$$
\begin{gathered}
\sigma^{N L O}=\int_{m} d^{(d)}\left(\sigma^{V}+\int_{1} d \phi_{1} C\right)+\int_{m+1} d^{(d)}\left(\sigma^{R}-C\right)+\int_{m} d^{(4)} \sigma^{B} \\
\text { MadLoop MadFKS MadGraph }
\end{gathered}
$$

Currently only for the SM and NLO in QCD

Pair Higgs Production

[Frederix, Frixione, Hirschi, Maltoni, Mattelaer,Torrielli,Vryonidou, Zaro (2014)]

Single Higgs

Results:

Double Higgs

But No Loop Induce

Top-quark pair production at LC

top-pair production at LC

- $\mathrm{e}+\mathrm{e}->\mathrm{t} \mathrm{t} \sim$ [QCD]
- 6.23e-01 pb ($250 \mathrm{GeV}+250 \mathrm{GeV}$)
- less than 60s computation
- e+ e- > W+ bW-b~ [QCD]
- require complex mass scheme
- $5.44998365 \mathrm{e}-0 \mathrm{I} \mathrm{pb}$
- couple of hours
- $\mathrm{e}+\mathrm{e}->b$ b~ mu-vm ta+ vt [QCD]
- require complex mass scheme
- 5.59le-3 pb
- 3 days of running
first time computed

Offshell effect at NLO

- Diagrams with unstable particles present in general an imaginary part in the Dyson-ressumed propagator:

$$
P(p)=\left[p^{2}-m_{0}^{2}+P i\left(p^{2}\right)\right]^{-1}
$$

- Mixing of different perturbative orders breaks gauge invariance. Fine cancellations spoiled, leading to enhanced violation of unitarity
- No pole cancelation at NLO for fix-width scheme
- Solution: Complex Mass-Scheme: $M \rightarrow \sqrt{M^{2}-i M \Gamma}$,

$$
c_{W}^{2}=\frac{M_{w}^{2}+i M_{W} \Gamma_{W}}{M_{Z}^{2}+i M_{Z} \Gamma_{Z}}
$$

Gauge dependence at LO

$\|A\|^{2}-\mid$ Feynman-unitary $\mid /$ unitary	complex mass	fixed width
$e^{+} e^{-} \rightarrow u \bar{u} d \bar{d}$	$1.5334067678 \mathrm{e}-15$	$1.2312200197 \mathrm{e}-09$
$u \bar{u} \rightarrow u \bar{u} d \bar{d}$	$2.0862057616 \mathrm{e}-16$	$2.7696013365 \mathrm{e}-10$
$u \bar{u} \rightarrow b \bar{b} e^{+} \nu_{e} \mu^{-} \nu_{\mu}$ (real Yuk)	$1.7934842084 \mathrm{e}-06$	$2.2832833007 \mathrm{e}-05$
"(complex Yuk)	$8.5986902303 \mathrm{e}-16$	$2.2832833007 \mathrm{e}-05$

- Complex Mass Scheme restore gauge invariance
- yukawa coupling must be promoted to complex parameter as well

Offshell effect at NLO

e+ e- > w+ w-b b~

$e+e->t \mathrm{t} \sim$

Conclusion

- MG5_aMC is
\Rightarrow public
- automatic
\Rightarrow flexible
- for LHC and LC
- For LO and NLO Generation
- Full BSM at LO
- New Physics coming at NLO
- Lot of tools
- Automatic computation of the width
- Decay with Full-Spin correlation
- This is only the beginning of this Tool!

