Comments on the Top Mass Relevant for ILC and LHC

André H. Hoang

University of Vienna

WS on Top Physics at the LC, March 5-6, 2014, LPNHE Paris

Outline

General remarks

- Field theoretic aspects: Short-distance vs. pole mass
- Renormalon problem
- Top mass in MC programs
- Top threshold at ILC
- Total cross section at LHC
- Jet reconstruction: status
- Outlook and Conclusions

General Remarks

Quantum Field Theory:

Particles: Field-valued operators made from creation and annihilation operators

Lagrangian operators constructed using correspondence principle

Classic action: m is the rest mass No other mass concept exists at the classic level.

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{classic}} + \mathcal{L}_{\text{gauge-fix}} + \mathcal{L}_{\text{ghost}} \qquad (p^2 - m^2) q(x) = 0$$

$$\mathcal{L}_{\text{classic}} = -\frac{1}{4} F^A_{\alpha\beta} F^{\alpha\beta}_A + \sum_{\text{flavors } q} \bar{q}_{\alpha} (iD - m_q)_{\alpha\beta} q_b \qquad D^{\mu} = \partial^{\mu} + igT^C A^{\mu C}$$

$$\stackrel{i \frac{p + m}{p^2 - m^2 + i\epsilon}}{\longrightarrow} \qquad \text{classic particle poles}$$

Concept of a Quark Mass

Renormalization: UV-divergences in quantum corrections

Fields, couplings, masses in classic action are bare quantities that need to be renormalized to have (any) physical relevance

Mass Renormalization Schemes you know:

Pole mass: mass = classic rest mass

$$m^0 = m^{\text{pole}} + \delta m^{\text{pole}} \qquad \delta m^{\text{pole}} = \Sigma(m, m)$$

MS mass: $m^0 = \overline{m}(\mu) - \frac{\alpha_s}{\pi} \frac{1}{\epsilon}$

So ... do we have to care?

$$\Sigma(m,m) = -\frac{4}{3} \int \frac{d^4q}{(2\pi)^4} \alpha_s \gamma^{\mu} \frac{q+k+m}{(q+k)^2 - m^2} \gamma_{\mu} \frac{1}{q^2}$$
$$\stackrel{q \ll m}{=} \frac{2}{3} \int \frac{d^3q}{(2\pi)^3} \frac{\alpha_s(q)}{\vec{q}^2} = -\frac{1}{2} \int \frac{d^3q}{(2\pi)^3} V(\vec{q}^2)$$

On-shell limit: Causes linear sensitivity to infrared momenta leads to factorially growing coefficients in perturbation theory.

$$\Sigma(m,m) \sim \sum_{n} \alpha_s^{n+1} (2\beta_0)^n n!$$

. . . .

OK, we can absorb the bad correction into the mass

Recall:

$$+ \underbrace{\Sigma, \Sigma}_{p-m^{\text{pole}}} = p - m^0 + \Sigma(\not p, m^0)$$
$$\sim p - m^{\text{pole}}$$

What's the problem?

Concept of a Quark Mass

- The on-shell limit is intrinsic to the definition S-matrix elements involving external heavy quarks. (Cannot be avoided in perturbation theory)
- Linear infrared sensitivity for the Quark self-energy AND the Interaction in the on-shell limit.

- The heavy quark on-shell limit is, however, artificial/unphysical and all linear infrared sensitivity cancels in a IR-safe process.
- → Use of pole mass prohibits the cancellation to become manifest.
 - Pole mass: order-dependent concept
 - In practice: Relevant if one asks for precision δm_t< 1 GeV

Examples

WS on Top Physics at the LC, March 5-6, 2014, LPNHE Paris

Short-distance mass schemes:

$$m^{\rm sd}(R) = m^{\rm pole} - R\left(a_1\frac{\alpha_s}{4\pi} + a_2\left(\frac{\alpha_s}{4\pi}\right)^2 + \dots\right)$$

MS mass: $R = \overline{m}(\mu)$, $a_1 = \frac{16}{3} + 8 \ln \frac{\mu}{m}$

Generic form of a shortdistance mass scheme.

Processes where heavy quarks are off-shell and energetic.

Threshold masses (1S, PS, RS, kinetic masses) Quarkonium bound states: $B \sim m \alpha$. Quarkonium bound states: heavy quarks are close to their mass-shell

$$R \sim m \alpha_s$$

Jet masses

(jet mass)

 $R \sim \Gamma_Q$

Single quark resonance: heavy quarks are very close to their mass-shell.

The a_i 's are chosen such that the renormalon is removed.

The scale R is of order the momentum scale relevant for the problem.

MC Mass

Universal instrument to describe hadronic final states.

• Hadronization model and α_s are "tuned" to experimental data.

Answer might be process- and observable-dependent !

MC Mass

 Concept of mass in the MC depends on the structure and reliability of the perturbative part and the interplay of perturbative and nonperturbative part in the MC:

- Assume that the MC is a good QCD box (LO of s.th. more precise): How can one pin down the relation between m_t^{Pythia} and the Lagrangian mass ?
- Is the MC really a good QCD box ? Is the MC more a model or more QCD ?

Answer for m_t^{Pythia} might be process- and observabledependent if the MC is not a good QCD box !

Total ttbar Cross Section (ILC)

Principle: m_t from $\sigma_{tt}(m_t)$

Advantages:

- \triangleright count number of $t\bar{t}$ events
- color singlet state
- background is non-resonant
- physics well understood

(renormalons, summations)

Top decay protects from non-pert effects

Much of the discriminating power of the approach related to the strong mass-dependence (ttbar resonance).

Peak position very stable in theory predictions (threshold mass scheme).

Typical results: $\rightarrow \delta m_t^{exp} \simeq 50 \text{ MeV}$ $\rightarrow \delta m_t^{th} \simeq 100 \text{ MeV}$ $\underbrace{What mass?}{\sqrt{s_{rise}} \sim 2m_t^{thr} + \text{pert.series}}$ (short distance mass: $1S \leftrightarrow \overline{MS}$)

Total ttbar Cross Section (ILC)

Theory issues (Pros) : Multi-scale problem (m, mv, mv² ~ 1.5 GeV)

- NNNLO fixed-order approach (pQCD for total cross section)
- NNLL RG-improved approach (pQCD for total cross section)

Norm and shape of σ_{tot} much less precise than peak position: $d\sigma_{tot}/\sigma_{tot} \sim 5\%$

Theory issues (Cons) : Only little / no progress has been achieved in 10 years

- Electroweak/unstable particle theory for total cross section (w.i.p)
- Differential distributions (almost nope)
- Unstable particle effects in distributions (none)
- Monte-Carlo-Simulations for threshold (w.i.p.)
- PDF's for ILC (impact of luminosity spectrum, ISR, etc) (very little)
- Last 10 years: Most energy went into QCD corrections of total cross section. Still many more problems to be addressed: Status: "strong arms, thin legs"

At this time: $\delta_{\text{theory}} >> \delta_{\text{experiment}}$

... published shortly, I guess

Hoang, Stahlhofen (2013)

Total ttbar Cross Section (LHC)

Principle: m_t from $\sigma_{tt}(m_t)$

Theory Progress:

- NNLO (qq channel)+NNLL available
- Pole and MSbar predictions available

Czakon, Mitov + other groups

- Theory issue: large sensitivity to gluon pdf $\leftrightarrow \alpha_s$
- Experimental issue: get σ_{tot} from σ (experiment)
- Norm errors feed in the top mass errors

$$m_t^{\text{pole}} = 176^{+3.8}_{-3.4} \,\text{GeV}$$

Chatrchyan etal, 2013 (CMS) arXiv:1307.1907

No apparent discrepancy at this time with assumption $m_t^{pole} = m_t^{Pythia}$.

Smaller errors hard, because many hard problems need to be resolved.

Reconstructed Top Jets (ILC)

thrust axis

Invariant mass distribution: (boosted tops)

n-collinear

hemisphere-b

soft particles

n-collinear

hemisphere-a

Fleming, Mantry, Stewart, AH (2008)

- Hemisphere top jets
- Related to event-shapes

Differential strongly top mass-dependent observable.

Top Mass dependent Distributions

Developments/w.i.p: (SCET: highly energic top quarks)

- Variable flavor number scheme for final state jets (w.i.p.)
- Jet mass distribution at the LHC (w.i.p.)
- Heavy quark effects in pdf's (ACOT scheme)
- Jet substructure for top initiated jets
- Effects of the underlying event
- p_T distributions

Aims:

- → Measure top mass directly without MC.
- → Tests: How well does MC do QCD? / "Measure" the MC top mass ?

Outlook & Conclusion

Conclusion:

- $\rightarrow \underline{\rm MC}$ most versatile tool to analyze data QCD parameters in MC not a priori well understood: $m_t^{\rm Pythia}$.
- → <u>Top Threshold:</u> Lot of progress for total cross section. Still lots of open questions and subtleties (distributions missing!, electroweak, photons, finite lifetime effects) more conceptual progress needed

 \rightarrow Top Jets (boosted Tops): progress/w.i.p for LC and LHC.

Direct top mass determination independent of MC. Direct competition to top threshold (very slow Tops) is emerging.

→ <u>Measurement of MC top mass</u> OR Test: MC = QCD box ? Only feasible for distributions.

