High Power RF: from TESLA to XFEL and ILC

RF Power Generation and Distribution

Stefan Choroba, DESY

High Power RF: from TESLA to XFEL and ILC DESY, ILC Seminar 14.02.2014

TESLA, XFEL, ILC and superconducting cavities

- •Early 1990s start of the TESLA Collaboration
- In 1990s Tesla Test Facility (TTF) setup at DESY
- •2001 TESLA TDR of a Linear Collider with integrated XFEL
- •2002 Supplement to the TDR on a dedicated linac for the XFEL,
- negotiations started to build the XFEL as European project at DESY
- •2006 TDR of the European XFEL
- •June 5, 2007 official launch European XFEL
- •First beam expected for 2016
- •2004 ITRP recommended superconducting technology for a future Linear Collider

 Many of the developments for TESLA and the XFEL might be used for the ILC

•Many other projects use 1.3GHz Tesla type cavities too

Overview

- > Introduction TESLA, European XFEL, ILC
- > Superconducting cavities
- > RF system requirements
- > RF sources
- > HV power generation
- > Power distribution

1.3GHz superconducting cavities

- > 1.3GHz 9-cell Tesla type
- > Max. gradient 46MV/m
- > Typical achieved today 25-35MV/m
- > Coaxial input coupler
- > Assembled in modules

1.3GHz accelerator modules

Cavity made of niobium, operated at 2K, gradient >23MV/m Q=10¹⁰ and 1.3GHz **Cryo Module** 2 K return 70 K shield 2.2 K forward magnet current feedthrough 5 K 80 K return forward 40 K Coupler 8 K return £ _ 4 K shield **RF** main coupler phase cavit у **Module String**

Stefan Choroba, DESY | High Power RF: from TESLA to XFEL and ILC | 14. Feb. 2014 | Page 5

TESLA 500 RF System Requirements

Number of sc cavities: Power per cavity: Gradient at 500GeV: Power per 36 cavities (3 cryo modules): Power per RF station:

Number of RF stations: Macro beam pulse duration: RF pulse duration: Repetition rate: Average RF power per station:

For TESLA 800 the number of stations must be doubled. The gradient is 35MV/m.

21024 total 231kW 23.4MV/m

8.3MW

9.7MW (including 6% losses in waveguides and circulators and a regulation reserve of 10%)

572

950µs 1.37ms 5Hz 66.5kW

XFEL RF System Requirements

Number of sc cavities: Power per cavity: Gradient at 20GeV: Power per 32 cavities (4 cryo modules): Power per RF station:

Number of RF stations: Number of RF stations for injectors:

Macro beam pulse duration:

RF pulse duration:

Repetition rate:

Average RF power per station:

800 total for 17.5GeV

122 kW 23.6 MV/m

3.9MW

5.2MW (including 10% losses in waveguides and circulators and a regulation reserve of 15%)
25 (27), active 23 (25)

2

650µs

1.38ms 10Hz (30Hz) 72kW (150kW)

Layout of a RF Station for TESLA and the European XFEL

RF Power Source for TESLA and XFEL

>	Operation Frequency:	1.3GHz
>	Cathode Voltage:	< 120 kV
>	Beam Current:	< 140 A
>	Max. RF Peak Power:	10MW
>	RF Pulse Duration:	1.5ms
>	Repetition Rate:	10Hz
>	RF Average Power:	150kW
>	Efficiency:	63%
>	Solenoid Power:	< 5.5kW
>	Length:	2.5m

Multi Beam Klystrons (MBK) have been chosen.

Three vendors have developed and manufactured MBKs, meeting the XFEL/TESLA requirements. Several years of development.

Multi Beam Klystron THALES TH1801

Measured performance

Operation Frequency: Cathode Voltage: Beam Current: Number of Beams: Cathode loading: Max. RF Peak Power: **RF Pulse Duration: Repetition Rate: RF** Average Power: Efficiency: Gain: Solenoid Power: Length: Lifetime (goal):

1.3GHz 117kV 131A 7 5.5A/cm² 10MW 1.5ms 10Hz 150kW 65% 48.2dB 6kW 2.5m ~40000h

Multi Beam Klystron CPI VKL-8301

Design Features:

•6 beams

•HOM input and output cavity

•Cathode loading: <2.5A/cm² lifetime prediction: >100000h

The TOSHIBA E3736 MBK

Design Features:

•6 beams

•Ring shaped cavities

Horizontal MBKs

- Since vertical MBKs do not fit in the accelerator tunnel horizontal version have been developed.
- All three vendors of MBKs have developed and manufactured horizontal versions of their MBK.
- These klystrons have been successfully tested at the klystron test facility at DESY.
- Finally two vendors are producing MBKs for the XFEL.

Horizontal multibeam klystron prototypes at the klystron test facility (KTF)

Some Test Results

Modulator Requirements

	typical	max.
Modulator Pulse Voltage/ Pulse Transformer Primary Voltage	9.6kV	12kV
Modulator Pulse Current Voltage/ Pulse Transformer Primary Current	1.62kA	1.8kA
Pulse Transformer Secondary Voltage / Klystron Gun Voltage	115kV	132kV
Pulse Transformer Secondary Current / Klystron Gun Current	135A	150A
High Voltage Pulse Duration (70% to 70%)	1.57ms	1.7ms
High Voltage Rise and Fall Time (0 to 99%)	0.15ms	0.2ms
High Voltage Flat Top (99% to 99%)	1.37ms	1.5ms
Pulse Flatness during Flat Top	±0.2%	±0.3%
Pulse-to-Pulse Voltage fluctuation	±0.1%	±0.1%
Energy Deposit in Klystron in Case of Gun Spark	<20J	20J
Pulse Repetition Rate	10Hz	10Hz (30Hz)
Pulse Transformer Ratio	1 :12	NA

Bouncer Modulator

•Bouncer modulators have been proposed for TESLA and are in use at FLASH and at the XFEL test facilities.

Bouncer Modulators by FNAL

- •3 modulators have been developed, built and delivered to TTF by FNAL since 1994
- •1 modulator is still in use, 2 others have been united and modified to 1 new modulator

Industry made bouncer modulator

•Industry made subunits (PPT, ABB, FUG, Poynting)

•Constant power power supply for suppression of 10Hz repetition rate disturbances in the mains

•Compact storage capacitor bank with self healing capacitors

•IGCT Stack (ABB); 7 IGCTs in series, 2 are redundant

•Low leakage inductance pulse transformer (ABB) L<200μH resulting in shorter HV pulse rise time of <200μs

•Light Triggered Thyristor crowbar avoiding mercury of ignitrons

The Pulse Step Modulator for XFEL

Stefan Choroba, DESY | High Power RF: from TESLA to XFEL and ILC | 14. Feb. 2014 | Page 19

The Pulse Step Modulator

- PSM meets XFEL requirements
- Operation time: several 1000h
- Efficiency: 87% (wallplug to 10kV modulator output)

MBK to Pulse Transformer Connection

Pulse Transformer and Connection Module for XFEL

Double wall pulse transformer

Connection module

> Performance requirements

Parameter	Unit	Specification
Output voltage	kV	120
Output current	Α	140
Pulse width	\mathbf{ms}	1.65
Pulse repetition frequency	Hz	5 (10)
Max. average power	kW	139
Output pulse flat-top	%	± 0.5
Pulse-to-pulse voltage fluctuation	%	± 0.5
Energy deposited into klystron during a gun spark	J	< 20

Power efficiency and heat loads of Marx

Parameter	Unit	Specification
SLAC P2 Marx DC to pulse flattop efficiency	%	95 ± 1
Assumed charging supply AC to DC efficiency	%	95
Usable power delivered to klystron	kW	138.6
Power delivered to collector during pulse rise and fall	kW	0.5
Power dissipated to air inside of modulator enclosure	kW	7.1
Power dissipated in the DC chargers	kW	7.4

Marx Generator Modulator

12 kV Marx Cell (1 of 16)

- IGBT switched
- No magnetic core
- Air cooled (no oil)

Pulse Transformer-less Fast Rise and Falling Time No pulse transformer

Information from GDE PAC Review (S. Fukuda, KEK) 2012-12-13

Marx modulator variants

	SLAC P1	DTI	ISA Corp.	SLAC P2
Cell voltage Number of cells	$11\mathrm{kV}$ 16	$rac{6 \mathrm{kV}}{20}$	3.5 kV 42 (7 delav)	$3.75\mathrm{kV}$
Redundancy	Vernier (16) $1.2 \mathrm{kV} + \mathrm{delay}$	Correction cells $(16) 0.9 \mathrm{kV}$	Vernier (16) $0.5 \mathrm{kV} + \mathrm{delay}$	Regulated cell (PWM correc-
Regulation Status	N+1 full test com- pleted	N+3 SLAC/KEK for MTBF test	N+1 Voltage test completed	N+2 full test com- pleted

(a) DTI Marx modulator (b) SLAC P1 Marx modulator (c) SLAC P2 Marx modulator

GDE PAC Review (S. Fukuda, KEK) 2012-12-13

P2 Marx Modulator at SLAC

Table 1. ILC klystron modulator parameters.

Output Voltage	120 kV
Output Current	140 A
Pulse Width	1.6 ms
Pulse Repetition Frequency	5 Hz
Average Power	134 kW
Output Pulse Flat-top	±0.5%
Energy Deposited into Klystron	<20 J
During a Gun Spark	

Table 2. P2 Marx cell and modulator parameters.

Cell Weight	< 50 lb
Cell Dimensions (inc. shield) (WxDxH)	13.75"x29.5"x8"
Cells Per Modulator	32
Minimum Cells for Full Output	30
Modulator Dimensions (WxDxH)	9'x5'x8'

Fast rise and falling time

P2 Marx celld are plug-in module types Flatness of the pulse Fast recovery after arc and high availability. GDE PAC Review (S. Fukuda, KEK) 2012-12-13

80

RF Power Distribution

•Distribution of klystron output power to the superconducting cavities

- Protection of the klystron from reflected power
- •Control of phase

Module Waveguide Distribution

Binary cell with shunt tee with integrated phase shifter

Waveguide Distribution

20 -

1

7

8

S21

2

Examples for waveguide distribution

Waveguides with cooling tubes at module during installation test

WATF with girders for waveguide assembly

Waveguides at girder during installation test

Waveguides at AMTF

Local PDS Layout of KCS / DKS

GDE PAC Review (S. Fukuda, KEK) 2012-12-13

Power Delivery in the Distributed Klystron System

GDE PAC Review (S. Fukuda, KEK) 2012-12-13

Stefan Choroba, DESY | High Power RF: from TESLA to XFEL and ILC | 14. Feb. 2014 | Page 32

Klystron Cluster Scheme

GDE PAC Review (C. Adolphson, SLAC) 2012-12-13

- RF power sources clustered in surface buildings.
- Power combined, transported through overmoded waveguide, and tapped off locally at each ML Unit.
- Two KCS systems per building/shaft feed upstream and downstream, ~1 km each.

Shaft Layout and ML Units

Coupling into the Circular Waveguide GDE PAC Review (C. Adolphson, SLAC) 2012-12-13

To couple power to the pipe, developed a "coaxial (wrap-around) tap-off", or CTO

Couplings range from -3 dB to ~-14 dB are needed, controlled by gap width

Thank you for your attention

Stefan Choroba, DESY | High Power RF: from TESLA to XFEL and ILC | 14. Feb. 2014 | Page 35