Towards a TPC for ILC

Astrid Münnich

ILC Project Meeting, DESY, 14.2.2014

- Tracking Requirements
- TPC Advantages for Physics
- R&D: How to build a TPC
- Challenges for the TPC

TPC: Working Principle

- Very simple principle
- But: Projection over long distances (drift) requires highly controlled environment (gas compositon, temperature)

A TPC for ILD

Requirements:

• Tracking efficiency

close to 100% down to low momentum to fulfill Particle Flow Algorithm (PFA) requirements.

• Minimum material

in front of the highly segmented calorimeter

Momentum resolution

 $\sigma(1/p_t) = 2 \times 10^{-5}$ /GeV for Higgs mass measurement (TPC alone 10^{-4} /GeV)

Solution: TPC

- \approx 200 continuous position measurements along each track
- Single point resolution of $\sigma_{r\phi} <$ 100 $\mu {\rm m}$
- Lever arm of around 1.2 m in the magnetic field of 3.5–4 T

From the machine side:

- Background:
 - e⁺e⁻ pairs: micro-curlers can be identified and removed
 - e mini jets: increase occupancy at low radius, not critical at ILC
- Beam structure:
 - Bunch train length: 1ms with bunches about 300 ns apart
 - TPC integration time: v_{drift} =70 mm/ μ s, L=2500 mm
 - ightarrow read out time $t=35\mu{
 m s}>100$ bunches

From the detector side:

Outer parameters: radius, length, magnetic field Glückstern formula:

$$\frac{\sigma(p_T)}{p_T} = \frac{\sigma(x)}{aBL^2} \sqrt{\frac{720}{N+4}} p_T$$

Large L \rightarrow large radius \rightarrow high cost

ILD Tracking Performance

Simulation studies:

- Very good tracking efficiency
- Also in high multiplicity events
- Good momentum resolution

 \rightarrow Tracking system with TPC can fulfill the requirements

Physics arguments for TPC:

- Pattern recognition
 → kinks, long lived particles
- Tracking efficiency
 - \rightarrow down to low momenta
- Momentum resolution
 - \rightarrow mass peaks (e.g. Higgs recoil),
 - \rightarrow kinematic edges
 - \rightarrow branching ratios
 - \rightarrow determine \sqrt{s}
- $\bullet \ dE/dx \ information$

- BSM after LHC: small mass differences → soft tracks, exclusive decays
- SM: multi-jet final states: 6,8 or 10 jets
 - \rightarrow PFA performance limited by jet-finding
 - \rightarrow exclusive decay chain reconstruction

Reconstruction of kinks and non-pointing tracks:

- Improves vertex information
- Allows to study decay of resonances, e.g. Λ_b
- GMSB \rightarrow up to 1m decay length

Particle ID with dE/dx

- dE/dx information not used in simulation or reconstruction and therefore not exploited in physics studies
- Mass information for track fit is important especially for low momenta where dE/dx is powerful
- \rightarrow Find the right benchmarks to exploit dE/dx information

Examples from ALEPH:

- Identification of low momentum electrons, separation form other charged particles e.g. pions
- Identification of protons and anti-protons
- Identification of heavy charged particles

The concept:

- How to reach the required momentum resolution?
 → excellent single point resolution
- ullet Conventional amplification with wires not able to reach 100 $\mu{
 m m}$
- New technology: Micro-Pattern Gas Detectors

R&D needs to show:

- Proof of principle
- Technical feasibility
- Reach required resolution

Micro-Pattern Gas Detectors

Y., Giomataris et al., Nucl. Instrum. Meth. A376:29-35,1996. Gas Electron Multipliers

F. Sauli, Nucl. Instrum. Meth. A386:531-534,1997.

Results: Point Resolution

Different modules in Large Prototype

• B=1 T

250

200

150

100

50

0

Resolution (µm)

T2K Gas: Ar(95%)CF₄(3%)iC₄H₁₀(2%)

All modules show similar results in agreement with requirements.

MicroMegas, resistive anode

 σ_0

10

Astrid Münnich (DESY)

TPC Challenges

Status:

- MPGD technologies established
- First integration tests of modules in the LP successful
- Single point resolution obtained

Things we still need to do:

- Long term stability and production of MPGD technologies
- Understand, minimize and correct field distortions
- Ion back flow
- Electronics development
- Environmental control
- Detector integration

My personal question:

Is the precision with which e.g. ALICE monitors and controls their TPC sufficient for high demands at ILC?

Ion Back Flow: Principle

- After each bunch train, a disk of positively charged ions from the amplification stage drifts back into the TPC volume
- Due to the very slow drift of ions up to three disks simultaneously in the gas volume of the ILD TPC \rightarrow field distortions
- With adjusted GEM settings, the ion back flow can be minimized, but not to zero
- Gating possibilities: wires, mesh, special GEMs, ...?

Ion Back Flow: Calculation

- The radial profile of the disk is dominated by machine-induced background during a bunch train
- Assumption: ion back flow factor from the amplification of 1 with respect to the primary ion charge
- Calculation of the expected distortion when electron passes through ion disk

 \Rightarrow Maximum of \approx 20 μm per disk

 \bullet Results in up to 60 μm distortion

\Rightarrow Gating needed

- Decide if wire, mesh or GEM gate
- Modules will be equipped with gates

Endplate:

Material budget less than 25% X_0

TPC stability: Integration of TPC in ILD

The next few years:

Before entering the engineering design of an ILD TPC, the following issues need to be studied further:

- Ion gate: the most urgent issue
- Some issues with MPGD technologies and MPGD modules
- Iccal distortions of MPGD modules
- Demonstration of power pulsing
- Scooling of readout electronics and temperature control of TPC
- Performance of MPGD TPC in 3.5T magnetic field

