### **Optimizing Source Parameters**

A. Ushakov<sup>1</sup>, G. Moortgat-Pick<sup>1</sup>, S. Riemann<sup>2</sup>, F. Staufenbiel<sup>2</sup>

<sup>1</sup>University of Hamburg (Germany); <sup>2</sup> DESY, Zeuthen (Germany)

Americas Workshop on Linear Colliders 2014

13 May 2014

Fermi National Accelerator Laboratory, Batavia IL USA





A. Ushakov (University of Hamburg)

# e<sup>+</sup> Source Scheme



Undulator-based source (RDR helical undulator) can be used at 250 GeV center-of-mass energy (more details in my LCWS13 talk)

- 231 m active magnet length of undulator is required
- 3.2 T Flux Concentrator with 8.5 mm minimal aperture radius is recommended (LLNL prototype of FC has 6.5 mm aperture radius)

### $e^+$ Polarization at 120 GeV $e^-$



e<sup>+</sup> polarization of source at 120 GeV e<sup>-</sup>:

- $P_{e^+} \simeq 40\%$  for  $R_{col} = 3.5$  mm and  $L_u = 231$  m, K = 0.92
- $P_{e^+} \simeq 31\%$  without collimator and  $L_u = 231$  m, K = 0.84

# Design of Photon Collimator\* (DESY Zeuthen)



\* ILC Technical Design Report, 2013

## e<sup>+</sup> Polarization with Photon Collimator at 175 GeV e<sup>-</sup>



 $e^+$  polarization of source at 175 GeV  $e^-$  (with photon collimator):

 $P_{e^+} \simeq 56\%$  for  $R_{col} = 1.2$  mm,  $L_u = 220$  m, K = 0.92

# e<sup>+</sup> Polarization without Photon Collimator at 175 GeV



e<sup>+</sup> polarization of source at 175 GeV e<sup>-</sup> (without photon collimator):

$$P_{e^+} \simeq 35\%$$
 for  $L_u = 231$  m,  $K = 0.47$ 

## Energy Deposition in Target at 175 GeV e<sup>-</sup>

70 m undulator with K = 0.92, 100 m/s rotating speed, 554 ns bunch spacing



 $\langle E_{
m ph} 
angle =$  14.5 MeV $\langle E_{
m dep} 
angle =$  1 MeV/ph

1312 bunches/pulse,5 Hz repetition rate:

 $\langle {\it P} 
angle pprox 3 \, {\rm kW}$ 

66 bunches/pulse

# Temperature Distribution after Bunch Train at 175 GeV



#### Distribution of Quasi-Static Stress at 175 GeV



A. Ushakov (University of Hamburg)

# Time Evolution of Dynamic Stress at 175 GeV



 $\sigma_{
m max} pprox$  **120 MPa** on back side of target at beam center

(at 120 GeV e<sup>-</sup>  $\sigma_{max} \approx$  140 MPa; fatigue strength for Ti6Al4V is 510 MPa)

#### Summary

- e<sup>+</sup> source at 175 GeV e<sup>-</sup> and 231 m active undulator length has much more "freedom" for *polarization upgrade* in comparison to 120 GeV
- $e^+$  polarization without using photon collimator is 35% at K = 0.47
- Photon collimator with 1.2 mm aperture radius will allow to increase P<sub>e+</sub> up to 56%
- At 175 GeV the maximal dynamic thermal stress in target induced by bunch train is ≈120 MPa. It is approx. 4 times less then the fatigue strength.

Can rotation speed at 175 GeV be reduced 4 times?

The eddy currents, mechanical stress due to rotation and material properties degradation due to radiation damage have to be studied.

At nominal ILC operation mode (1312 bunches/train, 554 ns bunch spacing): 66 bunches per pulse are crossing the same target area. Total average deposited by beam power in target is 3 kW

A. Ushakov (University of Hamburg)

**Optimizing Source Parameters** 

# Yield vs Target Thickness



Can target be made 2 times thinner? (P. Sievers)

## PEDD vs Target Thickness (120 GeV e<sup>-</sup>)



 $0.4X_0 \rightarrow 0.2X_0 \quad \Rightarrow \quad -4\% \text{ PEDD}$ 

### Energy Deposition Density on Beam Axis (120 GeV e<sup>-</sup>)



## Total Average Deposited Power (120 GeV e<sup>-</sup>)



 $0.4X_0 \rightarrow 0.2X_0 \implies -60\%$  Total Deposited in Target Energy

Topic of future study: Can, for example,  $0.2X_0$  W25Re target be used without active (water) cooling, just using **radiative cooling** only?

A. Ushakov (University of Hamburg)

**Optimizing Source Parameters**