Preparation for next ILD Optimisation Meeting

ILD Software&Analysis Meeting January 29, 2014 J.List, DESY

Next Optimisation Meeting

- Forseen date: 26th February
 → in 4 weeks from today (one sw/ana meeting in between)
- Forseen main topic: Tracking
- Task for sw/analysis group: Prepare discussion from
 - Physics side:
 - What are the physics arguments to justify a certain performance arspect?
 - Which benchmarks can illustrate this?
 - Software side:
 - Which detector configurations?
 - Do we have all the tools?

Tracking issues

- "geometry driven" (R, B, ...):
 - Momentum resolution \rightarrow today!
 - Track separation at calo (Pflow)
- "technology driven" (Si point resolution vs timing, ...):
 - Impact parameter resolution
 - Pattern recognition with pair bkg
 - In particular at low pt: charm tagging, taus, exclusive decays, exotics
- => balance of point vs time resolution in Si trackers

Momentum Resolution

- Resolution in barrel:

 → could we shrink TPC?
 → with or without increasing the B-field?
- Degradation at small θ: starts when tracks hit endplate → TPC length / aspect ratio

=> Physics arguments?

Physics Case for Momentum Resolution

- Classic: $ZH \rightarrow \mu\mu X$
 - Model-independent mass, cross-section
- In the long run: $H \to \mu \mu$
 - Branching ratio
- Basis for precision physics: $Z^* \rightarrow \mu \mu (\gamma)$
 - \sqrt{s} determination

Classic case: $ZH \rightarrow \mu\mu X$

Rock solid physics case:

- model-independent measurement of ZZH coupling!
- Final precision depends on
 - Luminosity
 - Signal-to-Background ratio \rightarrow narrow peak!
 - Beam energy spectrum
 - Momentum resolution

Classic case: ZH $\rightarrow \mu\mu$ X

• Hengne Li et al: Lol & LC-PHSM-2009-006:

... but detector resolution non-negligible!

 Higher energies: cross-section drops, larger muon momenta, more forward → but still contributes to combination Classic case: $ZH \rightarrow \mu\mu X$

Update for m_H=125 GeV:

• ongoing work by Shun Watanuki (Tohoku)

Proposal: study model-independent $\delta\sigma/\sigma(ZH \rightarrow \mu\mu X)$

- At 250 GeV, 350 GeV, 500 GeV
- for different TPC radii (eg 1.8m, 1.6m, 1.4m)
- and B-fields (3.5 T, 4 T, 5T)
- => Can be done reliably in SGV

Probably sufficient to treat ZH and µµff background..

.... any volunteers?

In the long run: $H \rightarrow \mu \mu$

- Higgs WP: 100% on branching ratio at 500 GeV (SiD)
- Most relevant at 1 TeV: 31% (1 ab⁻¹, Tino Calancha)
- But: even for TeV upgrade, we won't rebuild the coil / the calorimeters.....
- HighLumi-LHC projections: ~20% however more model-dependency.

=> again, the previous options could be studied rather easily in SGV

Basis for Precision Physics

- Interpretation of any cross-section measurement will depend on an accurate knowledge of sqrt(s) !
- In particular: Threshold scans
- In-situ determination of sqrt(s) from $Z^* \rightarrow \mu \mu (\gamma)$, c.f. Graham Wilson at ECFA LC2013:

		(Statistical errors only)		
ECM (GeV)	L (inv fb)	∆(√s)/√s Angles (ppm)	∆(√s)/√s Momenta (ppm)	Ratio
250	250	64	4.0	16
350	350	65	5.7	11.3
500	500	70	10.2	6.9
1000	1000	93	26	3.6
< 10 ppm for 200 – 500 GeV CoM energy				

$$\sqrt{s_{\mathrm{P}}} \neq p_{\mathrm{T}} \left(\frac{1 + \cos \theta_1}{\sin \theta_1} + \frac{1 + \cos \theta_2}{\sin \theta_2} \right)$$

Propose this as an additional benchmark

Discussion

- Comments?
- Other proposals?
- Volunteers?
- •