Update on Higgs Self-Coupling Measurement.

Claude-Fabienne Dürig¹, Junping Tian², Jenny List¹, Keisuke Fujii²

¹DESY Hamburg, Germany ²KEK, Japan

ILD Software and Analysis Meeting, 29.01.2014

Introduction

▶
$$\sqrt{s} = 500$$
 GeV, $\mathcal{L} = 2$ ab $^{-1}$, $m_{\text{H}} = 125$ GeV and $P(e^+e^-) = (0.3, -0.8)$

- > consider $\gamma\gamma$ beam background
- > last meeting: preliminary results of lepton channel

first insight into neutrino channel

 $\nu\nu\text{HH}$ cuts optimised "without overlay" and "with overlay" respectively

	background	signal (vvbbbb)
expected	$1.67 \cdot 10^{6}$	80.14
preselection	138200	28.53 (22.67)
	142742	28.39 (22.38)
final	4.52	5.26 (5.19)
	3.96	3.26 (3.23)

update: investigating inconsistency

	vvbb	evbbqq	$\mu\nu bbqq$	$\tau\nu bbqq$	bbqqqq	bbbb	$\nu\nu$ bbbb	$\nu \nu q q h$	bgrd	signal ($\nu\nu$ bbbb)
expected	272802	248454	245936	245708	624060	40234.3	97.08	447.01	$1.67\cdot 10^6$	80.14
preselection	545.42	1787.73	1480.96	37410.7	65529	31292.4	81.98	72.27	138200	28.53 (22.67)
	992.78	1996.63	318.61	38659.3	69697.7	30921.9	80.89	74.63	142742	28.39 (22.38)

Preliminary optimised "without overlay" (new)

- > cut1: $E_{vis} < 364 \text{ GeV} + 0.83 \cdot P_t^{miss}$, $M_Z < 60 \text{ GeV}$
- > cut2: $Npfos_{min} > 6, M(HH) > 200 \ {\rm GeV}, 100 \ {\rm GeV} < M(H1) < 139 \ {\rm GeV}, 91 \ {\rm GeV} < M(H2) < 135 \ {\rm GeV}$
- cut3: MVAbbbb > 0.83
- cut4: MVAlvbbqq > 0.61
- cut5: MVAvvbbbb > 0.57
- cut6: bmax3 + bmax4 > 1.08

	vvbb	evbbqq	$\mu\nu bbqq$	$\tau\nu bbqq$	bbqqqq	bbbb	$\nu\nu bbbb$	$\nu \nu q q h$	bgrd	signal ($\nu\nu$ bbbb)
expected	272802	248454	245936	245708	624060	40234.3	97.08	447.01	$1.67\cdot 10^6$	80.14
preselection	545.42	1787.73	1480.96	37410.7	65529	31292.4	81.98	72.27	138200	28.53 (22.67)
cut1 (evis,mpt,mz)	481.01	894.06	867.41	25002.4	1443.64	3943.25	80.5	70.09	32782.4	27.72 (22.00)
cut2 (npfo,mh1,mh2)	7.34	211.92	229.78	5259.57	260.39	390.75	9.88	19.76	6389.41	16.93 (14.9)
cut3 (mvabbbb)	4.88	184.62	200.52	4405.85	126.46	13.48	6.52	16.05	4958.4	15.04 (13.19)
cut4 (mvalvbbqq)	4.28	42.91	57.06	761.5	50.05	8.71	4.54	9.68	938.75	12.53 (11.25)
cut5 (mvavvbbbb)	3.05	31.13	42.3	571.16	49.19	7.34	1.57	4.95	710.72	10.49 (9.42)
cut6 (bmax34)	0	0	0	2.19	0.12	3.09	0.75	1.86	8.02	5.61 (5.54)

Result consistent with DBD full sim. for $m_H = 120 \text{ GeV}$ (LC-REP-2013-003)

	signal	background	significance
$m_H = 120~{ m GeV}$	8.5	7.9	2.1σ
$m_H = 125 \text{ GeV}$	5.6	8.0	1.4σ

Preliminary optimised "without overlay" (new)

Use optimised cuts for "without overlay" in analysis "with overlay"

	ννbb	evbbqq	$\mu\nu bbqq$	$\tau\nu bbqq$	bbqqqq	bbbb	$\nu\nu bbbb$	vvqqh	bgrd	signal ($\nu\nu$ bbbb)
expected	272802	248454	245936	245708	624060	40234.3	97.08	447.01	$1.67\cdot 10^6$	80.14
preselection	545.42	1787.73	1480.96	37410.7	65529	31292.4	81.98	72.27	138200	28.53 (22.67)
	992.78	1996.63	1661.69	38659.3	69697.7	30921.9	80.89	74.63	144086	28.39 (22.38)
cut1 (evis,mpt,mz)	481.01	894.06	867.41	25002.4	1443.64	3943.25	80.5	70.09	32782.4	27.72 (22.00)
	859.31	940.37	890.05	23270.3	887.79	3115.73	77.3	68.36	30109.2	26.14 (20.54)
cut2 (npfo,mh1,mh2)	7.34	211.92	229.78	5259.57	260.39	390.75	9.88	19.76	6389.41	16.93 (14.9)
	11.71	238.48	238.83	5061.16	259.73	324.07	9.41	18.67	6162.07	14.63 (12.88)
cut3 (mvabbbb)	4.88	184.62	200.52	4405.85	126.46	13.48	6.52	16.05	4958.4	15.04 (13.19)
	8.03	200.63	207.54	4169.06	136.88	11.23	6.05	15.02	4754.46	12.79 (11.23)
cut4 (mvalvbbqq)	4.28	42.91	57.06	761.5	50.05	8.71	4.54	9.68	938.75	12.53 (11.25)
	6.2	113.53	104.23	1717.91	101.75	9.95	5.19	11.93	2070.71	11.83 (10.54)
cut5 (mvavvbbbb)	3.05	31.13	42.3	571.16	49.19	7.34	1.57	4.95	710.72	10.49 (9.42)
	4.38	57.97	50.14	973.01	80.07	7.35	0.98	3.91	1177.82	8.26 (7.39)
cut6 (bmax34)	0	0	0	2.19	0.12	3.09	0.75	1.86	8.02	5.61 (5.54)
	0	0	0	7.29	0.44	3.34	0.42	1.46	12.98	4.49 (4.44)

More background \rightarrow need to optimise cuts for "with overlay" selection

Claude Fabienne Dürig | Higgs self-coupling at ILC | ILD Software and Analysis Meeting, 29.01.2014 | 3/5

Preliminary optimised "with overlay" (new)

- > cut1: $E_{vis} < 372 \text{ GeV} + 0.83 \cdot P_{t}^{miss}$, $M_{Z} < 60 \text{ GeV}$
- cut2: Npfos_{min} > 10, M(HH) > 200 GeV, 103 GeV < M(H1) < 141 GeV, 103 GeV < M(H2) < 136 GeV</p>
- cut3: MVAbbbb > 0.93
- cut4: MVAlvbbqq > 0.73
- cut5: MVAvvbbbb > 0.3
- cut6: bmax3 + bmax4 > 1.1

	ννbb	evbbqq	μνbbqq	$\tau \nu b b q q$	bbqqqq	bbbb	vvbbbb	vvqqh	bgrd	signal ($\nu\nu$ bbbb)
expected	272802	248454	245936	245708	624060	40234.3	97.08	447.01	$1.67\cdot 10^6$	80.14
preselection	992.78	1996.63	1661.69	38659.3	69697.7	30921.9	80.89	74.63	144086	28.39 (22.38)
cut1	862.421	989.73	929.3	24532	1247.81	3552.61	77.83	69.21	32260.9	26.58 (20.89)
cut2	5.57	163.74	154.34	2951.74	270.47	211.5	4.75	8.64	3770.76	11.64 (10.38)
cut3	2.45	110.95	112.07	1938.31	61.67	4.08	2.41	6.41	2238.37	8.64 (7.69)
cut4	2.45	44.11	45.75	624.46	38.02	3.27	1.91	4.69	764.7	7.52 (6.78)
cut5	2.45	37.35	39.77	568.33	36.88	3.13	1.29	4.09	693.32	7.14 (6.44)
cut6	0	0	0	0.56	0.12	1.27	0.63	1.46	4.05	3.82 (3.78)

new cut optimisation helps to reduce backgrounds

 last meeting: preliminary results of lepton channel first results of neutrino channel

 \blacktriangleright now: updated results of neutrino channel \rightarrow correct event numbers

 \rightarrow analysis without overlay consistent with DBD full simulation for $m_{\rm H}=120~{\rm GeV}$

modes	signal	background	sign.
I-I+HH	2.79 (2.38)	4.03	0.87σ
	3.09 (2.54)	4.89	0.91σ
ννHΗ	5.61 (5.54)	8.02	1.44σ

preliminary status for $m_H = 125$ GeV	' without overlay and with or a state of the state of	overlay
--	--	---------

modes	signal	background	sign.
I-I+HH	2.35 (2.03)	4.01	0.72σ
	3.01 (2.38)	5.98	0.82σ
ννHΗ	3.82 (3.78)	4.05	1.22σ

hadronic channel in progress

BACKUP SLIDES

Claude Fabienne Dürig | Higgs self-coupling at ILC | ILD Software and Analysis Meeting, 29.01.2014 | 6/5

> Higgs properties can be measured precisely at ILC (m_H , Γ_H^{tot} , etc.)

missing: Higgs potential, which represents test of EWSB and mass generation

to measure Higgs self-coupling one must observe double Higgs production at lepton or hadron colliders

DBD Status for $m_H=120 \text{ GeV}$

> Measurement at $\sqrt{s} = 500$ GeV, $\mathcal{L} = 2$ ab⁻¹ and $P(e^+e^-) = (0.3, -0.8)$

modes	signal	background	significance	
		(tt, ZZ, ZZH, ZZZ)	excess	measurement
$\rm ZHH \rightarrow I^-I^+HH$	3.7	4.3	1.5σ	1.1σ
	4.5	6.0	1.5σ	1.2σ
$ZHH \to \nu \bar{\nu} HH$	8.5	7.9	2.5σ	2.1σ
${\sf ZHH} \to {\sf q\bar{q}HH}$	13.6	30.7	2.2σ	2.0σ
	18.8	90.6	1.9σ	1.8σ

> here: investigated Higgs mass $m_{\rm H}$ = 120 GeV

> cross-section: $\frac{\delta \sigma_{\text{ZHH}}}{\sigma_{\text{ZHH}}} = 27\% \ (> 3.5\sigma)$

Higgs self-coupling:
$$\frac{\delta\lambda}{\lambda} = 44\%$$

Next steps

- > perform analysis with new $m_{\rm H} = 125$ GeV samples
- > consider low- $p_T \gamma \gamma \rightarrow$ hadrons beam induced background
- different starting points for improvement

Summary: lepton channel IIHH (preliminary)

() isolated lepton selection

new isolation requirement based on neural nets

 $\label{eq:loss} IsolatedLeptonTaggingProcessor/ZHHIl4JLeptonSelectionProcessor \rightarrow J. Tian new lepton selection strategy increases signal efficiency$

2 $\gamma\gamma$ -overlay removal (< $N_{\gamma\gamma} = 1.7$ >)

FastJetClustering: k_T ExclusiveNJets4

R-value= 1.3 shows best recovery of bare events

 ${f 3}$ force pfos into 4 jets and combine them to two Higgs bosons (smallest $\chi^2)$

() train separate neural nets for dominant backgrounds after preselection

5 preliminary results: optimised "without overlay" and "with overlay", respectfully

	eeHH (eebbbb)	background
expected	40.50	$1.74 \cdot 10^{6}$
preselection	23.14 (7.59)	4887.79
	22.86 (7.53)	4933.19
ltype=11	11.38 (3.75)	3323.14
	11.24 (3.72)	3273.43
final	2.79 (2.38)	4.03
	2.35 (2.03)	4.01

	μμΗΗ (μμbbbb)	background
expected	40.50	$1.74 \cdot 10^{6}$
preselection	23.14 (7.59)	4887.79
	22.86 (7.53)	4933.19
ltype=13	11.77 (3.84)	1564.65
	11.62 (3.81)	1659.76
final	3.09 (2.54)	4.89
	3.01 (2.38)	5.98

Selection strategy for neutrino channel

- 1 reject events with isolated leptons
- 2 remove low- $p_T \gamma \gamma \rightarrow$ hadrons background
- 3 force the other reconstructed particles into four jets
- ${f 0}$ combine the four jets by choosing combination with smallest χ^2

$$\chi^{2} = \frac{(M(j_{i}j_{j}) - M(H))^{2}}{\sigma_{H}^{2}} + \frac{(M(j_{k}j_{l}) - M(H))^{2}}{\sigma_{H}^{2}}$$

require: $|M_{\rm H} - 125~{\rm GeV}| < 80~{\rm GeV}$

- **6** loose cut on bmax3 > 0.2
- () neural net analysis performed separately for signal and each background, output classifiers are used to suppress background

divide background into four different categories:

jets-poor background (vvqq) semileptonic ttbar background (lvbbqq) full-hadronic background (6-jets and 4-jets) backgrounds with same final states (ZZH/ZZZ)

Summary: preliminary preselection for $\nu\nu$ -channel

Preselection for	samples with	overlaid	low-pT 7	$\gamma\gamma \rightarrow$	hadrons	background
------------------	--------------	----------	----------	----------------------------	---------	------------

	νīHH	νīνqqH	νīvbbbb	νīνbb	lvbbqq	bbqqqq	bbbb
expected no. of events	80.14	447.01	97.08	272802	740098	624060	40234.3
reject evts with iso leptons	62.95	393.14	95.65	270348.35	240016.16	617460.12	39725.04
k_T 1.3 ExclusiveNJets4	62.53	393.09	95.65	270348.36	240016.13	617460.12	39725.04
$ M_{\rm H}-125~{ m GeV} <80~{ m GeV}$	60.76	384.39	92.12	11063.92	237807.36	559498.11	37327.76
<i>bmax</i> 3 > 0.2	28.39	74.62	80.89	992.78	40974.54	69697	30921.9

Comparison to samples without $\gamma\gamma$ -overlay

	$\nu\bar{\nu}HH$	ν⊽qqH	$\nu \bar{\nu} bbbb$	νīvbb	lvbbqq	bbqqqq	bbbb
expected no. of events	80.14	447.01	97.08	272802	740098	624060	40234.3
reject evts with iso leptons	62.46	392.69	95.58	270371.59	238532.66	617430.18	39714.81
k_T 1.3 ExclusiveNJets4	-	-	-	-	-	-	-
$ M_{ m H}-125~{ m GeV} <80~{ m GeV}$	61.07	386.45	93.31	8407.49	236087.28	461720.89	37594.43
bmax3 > 0.2	28.53	72.27	81.99	545.42	40679.39	65529	31292.4

Exclusive k_T algorithm recovers event without $\gamma\gamma$ -overlay very well.

Claude Fabienne Dürig | Higgs self-coupling at ILC | ILD Software and Analysis Meeting, 29.01.2014 | 11/5

Neutrino channel: NN training after preselection

After preselection:

- train neural nets for: 4jets background (bbbb)
 - semileptonic ttbar background (lvbbqq) backgrounds similar to signal final state (ZZH/ZZZ)

Input variables: bbbb vs $\nu\nu\text{HH}$

- visible energy
- missing pt
- > thrust
- M(Z1) when rec. as ZZ
- M(Z2) when rec. as ZZ
- largest 4jet momentum

Input variables: lvbbqq vs $\nu\nu$ HH

- missing mass
- Econemax and plmax
- pcmax and coscjmax
- cosbmax
- number of pfos
- ≻ mwtt4j
- mh1 and mh2
- mwtt5j, mt1tt5j, mt2tt5j, mjminjets5
- npfosminjets5

Input variables: ZZZ/ZZH vs IIHH

- M(Z) when rec. as ZH
- M(H) when rec. as ZH
- M(Z1) when rec. as ZZ
- ► M(Z2) when rec. as ZZ
- ➤ cosine (ZZH)
- cosine (ZZZ)
- largest mom. (ZZH)
- largest mom. (ZZZ)

Comparison of NN outputs and input variables from analysis w and w/o overlay in backup

Preliminary optimised "without overlay" (15.01.14)

- cut1: E_{vis} < 360 GeV + 0.83 · P_t^{miss}, M_Z < 60 GeV</p>
- > cut2: $\it NPFO_{min}$ > 8, $\it M(HH)$ > 200 GeV, 92 GeV $< \it M(H1) <$ 137 GeV, 94 GeV $< \it M(H2) <$ 135 GeV
- ➤ cut3: MVAbbbb > 0.89
- cut4: MVAlvbbqq > 0.55
- cut5: MVAvvbbbb > 0.56
- cut6: bmax3 + bmax4 > 1.14

Cuts optimised for "without overlay"

and applied to "with overlay"

	vvbb	evbbqq	$\mu\nu bbqq$	$\tau\nu bbqq$	bbqqqq	bbbb	$\nu\nu bbbb$	$\nu\nu qqh$	bgrd	signal ($\nu\nu$ bbbb)
expected	272802	248454	245936	245708	624060	40234.3	97.08	447.01	$1.67\cdot 10^6$	80.14
preselection	545.42	1787.73	1480.96	37410.7	65529	31292.4	81.98	72.27	138200	28.53 (22.67)
	992.78	1996.63	318.61	38659.3	69697.7	30921.9	80.89	74.63	142742	28.39 (22.38)
cut1 (evis,mpt,mz)	481.01	874.99	855.19	24453.2	1239.64	3699.86	80.36	69.74	31754	27.58 (21.89)
	856.82	914.52	159.96	22609	741.45	2921.47	76.96	67.85	28348	25.89 (20.33)
cut2 (npfo,mh1,mh2)	9.80	196.17	222.99	4616.09	214.25	384.15	10.55	20.62	5674.62	16.61 (14.68)
	10.55	214.91	49.26	4299.18	207.01	316.64	10.02	19.96	5127.53	14.29 (12.65)
cut3 (mvabbbb)	5.51	150.47	174.77	3401.85	56.35	7.51	5.95	15.05	3817.46	14.45 (12.72)
	5.57	171.71	38.39	3330.89	85.41	8.17	5.94	15.03	3661.11	11.86 (10.45)
cut4 (mvalvbbqq)	4.29	34.28	50.38	618.86	23.91	5.06	4.01	8.71	749.47	12.78 (11.43)
	3.75	102.22	19.07	1660.07	65.45	7.43	5.14	12.43	1875.56	11.07 (9.88)
cut5 (mvavvbbbb)	2.46	22.82	35.14	415.19	23.58	4.25	0.67	4.12	508.24	11.01 (9.84)
	3.15	54.55	8.62	910.39	52.08	5.45	0.95	4.14	1039.34	7.79 (6.99)
cut6 (bmax34)	0	0	0.16	0.99	0	1.65	0.27	1.43	4.52	5.26 (5.19)
	0	0	0	5.75	0.24	1.91	0.37	1.43	9.69	3.86 (3.82)

DESY

Claude Fabienne Dürig | Higgs self-coupling at ILC | ILD Software and Analysis Meeting, 29.01.2014 | 13/5

Preliminary optimised "with overlay" (15.01.14)

- > cut1: $E_{vis} < 373 \text{ GeV} + 0.83 \cdot P_t^{miss}$, $M_Z < 60 \text{ GeV}$
- ➤ cut2: Npfos_{min} > 7, M(HH) > 200 GeV, 95 GeV < M(H1) < 140 GeV, 94 GeV < M(H2) < 135 GeV</p>
- cut3: MVAbbbb > 0.92
- cut4: MVAlvbbqq > 0.67
- cut5: MVAvvbbbb > 0.56
- cut6: bmax3 + bmax4 > 1.2

	vvbb	evbbqq	$\mu\nu bbqq$	$\tau\nu bbqq$	bbqqqq	bbbb	$\nu\nu$ bbbb	vvqqh	bgrd	signal (vvbbbb)
expected	272802	248454	245936	245708	624060	40234.3	97.08	447.01	$1.67\cdot 10^6$	80.14
preselection	992.78	1996.63	318.61	38659.3	69697.7	40921.9	80.89	74.63	142742	28.39 (22.38)
cut1	862.421	995.118	171.55	24672.2	1301.68	3607.56	77.89	69.33	31757.8	26.63 (20.93)
cut2	12.41	250.19	49.81	5156.49	379.23	371.17	9.59	19.39	6248.29	15.11 (13.33)
cut3	5.57	181.48	36.65	3502.48	90.98	6.51	5.23	13.86	3842.77	11.51 (10.12)
cut4	4.35	67.72	11.47	1220.41	57.45	5.14	4.07	9.66	1380.26	9.96 (8.92)
cut5	3.75	37.49	4.5	697.34	45.1	4.15	0.82	3.42	796.58	7.12 (6.39)
cut6	0	0	0	1.07	0.12	1.41	0.28	1.08	3.96	3.26 (3.23)

Neural nets less effective in analysis with overlay has to be investigated and improved (NN outputs in backup) tau background needs better handling

Claude Fabienne Dürig | Higgs self-coupling at ILC | ILD Software and Analysis Meeting, 29.01.2014 | 14/5

New DiLeptonSelection - Isolation Requirement

old lepton selection - isolation requirement:

> cut based on energy distributions in calorimeter

new lepton selection - isolation requirement:

- neural net based (MVA)
- train neural net with samples for signal: eeHH and µµHH background: bbbb and lvbbqq
- > MVA output is written to lepton collection, can be optimised in final selection

Example of input variable: energyratio

Claude Fabienne Dürig | Higgs self-coupling at ILC | ILD Software and Analysis Meeting, 29.01.2014 | 15/5

New DiLeptonSelection - Isolation Requirement

▶ IsolatedLeptonTaggingProcessor/ZHHII4JLeptonSelectionProcessor \rightarrow J. Tian

Current Improvement

efficiency (%)	eehh	μμhh	bbbb	evbbqq	μνbbqq
new selection	86.99	89.11	0.00168	0.315	0.0196
old selection	85.7	88.4	0.028	1.44	0.10

New lepton selection strategy increases signal efficiency. Suppression of hadronic and one-lepton backgrounds is significantly improved.

Removal of beam induced $\gamma\gamma$ background

