Higgs Recoil Mass Study

Jan 31, 2014

Jacqueline Yan

Komamiya Lab, Univ. of Tokyo

CV 520

recoil mass study using $e+e- \rightarrow Zh \rightarrow \mu+\mu-h$ @ Ec.m.s. = 250 GeV, L = 250 fb-1

<u>Goal:</u>

precise measurement of

- Higgs mass
- cross section σ_{H} : N = $\sigma * L * \varepsilon$

Dimuon recoil mass → peak @ mh ~125 GeV measure Higgs without having to look directly at Higgs !!

e+e- \rightarrow Zh $\rightarrow \mu+\mu$ -h process is important for model independent measurement of absolute Zh coupling

ghZZ $^2 \propto \Gamma(h \rightarrow ZZ*) / \Gamma$ tot

also useful for other couplings and branching ratios

polarization: $(e^{-}, e^{+}) = (0.8, 0.3)$

$$M_X^2 = ig(p_{CM} - (p_{\mu^+} + p_{\mu^-})ig)^2$$

 $250 \, {
m fb}^{-1}$ @250 GeV $^{m_H \, = \, 125 \, {
m GeV}}$ $\Delta \sigma_H / \sigma_H = 2.6\%$ $\Delta m_H = 30 \, {
m MeV}$ $BR({
m invisible}) < 1\% \, @\, 95\% \, {
m C.L.}$

from K. Fujii @ Higgs and Beyond, Sendai, June 2013

Changes from previous week

c corrected some bugs in analysis e.g. when selecting best muon pairs

□ do track selection at beginning and change method
 before : dP/P^2 ←→ now: cos(trackAngle)
 details later

☐ further optimization of BG rejection → improve signal efficiency this time, efficiency table is made in narrow signal range using weighted events

<u>Samples</u>

for now, only used eLpR and eRpL /grid/ilc/prod/ilc/mc-dbd/ild/dst-merged/250-TDR_ws/

Assign weight based on cross section, luminosity, polarization

event weight = pol_weight * (process_cross_section * assumed_integrated_luminosity)
/ (number_of_reconstructed_events)

Signal sample:

higgs_ffh/ILD_o1_v05/v01-16-p10_250 rv01-16-p10_250.sv01-14-01-p00.mILD_o1_v05.E250-TDR_ws.I106479.Pe2e2h.eL.pR-00001-DST.slcio

rv01-16-p10_250.sv01-14-01-p00.mILD_o1_v05.E250-TDR_ws.I106480.Pe2e2h.eR.pL-00001-DST.slcio

List of BG process for Zmumu	eLpR	cross sec	weight
• 4f_ZZ_leptonic	higgs	17.14	0.146
• 4f_ZZ_semileptonic	BG in order of	f large cross section	
• 2f_Z_leptonic dominant ones	2f_Z_I	21226.4	1.46
• 4f_WW_leptonic	4f_ZZWWMix_I	1636.04	0.583
• AtSingleZee_leptonic	4f_WW_I	1564.21	0.573
• Af 77WWMix leptonic	4f_ZZ_sl	1422.14	0.583
	4f_singleZee_I	1084.1	0.581
	4f_singleZnn_l	192.75	0.47
	4f_ZZ_I	157.96	0.578

Muon Selection

- reject neutrals
- Ptot > 5 GeV
- small E_cluster / P_total < 0.5
- opposite charge

Best track selection cos(track angle) < 0.95 |D0/δD0| < 4</p>

Best Z Candidate Selection

2 mu candidates with opposite charge

if several possibilities :

choose pair with invariant mass closest to Z mass

Final Selection

analysis after filling root files

- 86 GeV < M_mumu < 95 GeV
- 123 GeV < Mrecoil < 135 GeV</p>
- 10 GeV < pT_mumu < 70 GeV
- 0.2 < mumu_acoplanarity < 3
 - **|cos(θ_Zpro)| < 0.91** (Z production angle)

Evaluate data selection efficiency in within range of 123 - 135 GeV

calculate recoil mass with correction for 14 mrad beam crossing angle

Comparison of Some Parameters between Signal and BG Processes

Impact parameter $D0/\delta D0$

this cut will be more effective after stau-tau samples are included

For some BG processes exceed +/- 4 slightly

do cut : $|D0/\delta D0| < 4$

Cos(track angle)

BG is More forward

more straight-forward to use cos(trackAngle) than dP/P² for track quality selection

do cut : cos(trackAngle) < 0.95

correlation between <u>PT and dP/P²</u>

acoplanarity

do cut : 0.2 < acop < 3

fabs (atan2(py1,px1) – atan2(py2,px2)) if (acos>pi) {acos = 2*pi – acos;}

BG Rejection Efficiency : 123 – 135 GeV

if wider M_inv cut (80-100 GeV) S/N = 0.37
 not as good
if no initial track selection: S/N = 0.22

cut	signal	eff	BG_all	eff	S/N	S/sqrt(S+N)
no cut	210	30 100%	50461	100%	0.043	9.416
best mu	193	38 90%	34109	67.59%	0.057	10.207
M_inv	160	0 74%	i 13283	26.32%	0.120	13.115
M_rec	148	32 69%	8097	16.05%	0.183	15.142
P_Tdl	140	68%	4032	7.99%	0.363	19.736
асор	130	66 63%	3546	7.03%	0.385	19.490
θz	129	60%	2788	5.53%	0.465	20.280
after M_	rec cut	Signal effi 60%	iciency	BG reduced to 6 %	7 S/N impro 0.47	oved to

PT_dl and cos ϑ Z cut seem quite effective for improving S/N

cut	4f_ZZ_I	4f_ZZ_sl	2f_Z_I	4f_WW_I	4fSingleZee_I	4fSingleZnn_l	4f_ZZWWMix_I	
no cut	989	4163	27574	5735	2295	810	8896	
best mu	753	3251	19228	1543	880	668	7787	
M_inv	337	1264	9865	219	151	356	1091	
M_rec	204	765	6011	136	95	224	663	
P_Tdl	181	742	2021	134	92	218	643	
асор	156	680	1695	124	80	199	610	
θZ	132	596	1164	115	69	175	537	

recoil mass

fitted recoil mass : Mh = 125.3 GeV +/- 70 MeV

calculate recoil mass with correction for 14 mrad beam crossing angle

after implementing all cuts

• BG: 3rd order polynomial • signal : GPET: 5 parameters : Gaus (left-side), Gaus + expo (right side) $N \exp \left[\hat{l} - \frac{1}{2} \frac{x}{C} \frac{x - x_{mean}}{S} \frac{\ddot{0}^{2} \ddot{\mu}}{\dot{y}} - \frac{x}{C} \frac{x - x_{mean}}{S} \frac{f}{L} k_{\dot{\theta}}^{\ddot{0}} - \frac{1}{2} \frac{x}{C} \frac{x - x_{mean}}{S} \frac{\ddot{0}^{2} \ddot{\mu}}{\dot{y}} - \frac{x}{C} \frac{x - x_{mean}}{S} \frac{f}{L} k_{\dot{\theta}}^{\ddot{0}} - \frac{1}{2} \frac{x}{C} \frac{x - x_{mean}}{S} \frac{\ddot{0}^{2} \ddot{\mu}}{\dot{y}} + (1 - b) \exp \left[\hat{l} - k_{\dot{C}} \frac{x - x_{mean}}{S} \frac{\ddot{0} \ddot{\mu}}{\dot{y}} \exp \left(k^{2} / 2 \right) \right]_{\dot{\mu}}^{\dot{\mu}} = \frac{x - x_{mean}}{C} \frac{x - x_{mean}}{S} \frac{x}{\dot{\theta}} \frac{\ddot{n}}{S}$

Summary

- Higgs recoil mass study using $e+e- \rightarrow Zh \rightarrow \mu+\mu-h$ @ Ec.m.s. = 250 GeV, L = 250 fb-1
- changes made to data selection method
- updated results:
 signal efficiency ε = 60%, S/N ~ 0.47, S/sqrt(S+BG) ~ 20, BG effficiency → 5.5 %

Further Plans

- optimize data selection method
 → want higher signal efficiency study distribution of various parameters
- include eLpL & eRpR + other BG processes (tau related , hadronic , ect..... just to be sure)
- estimate mass resolution using pseudo-experiments
- analyze scenario of unpolarized beam ILC will be commissioned with unpolarized beam ??
- in near future, analysis at Ec.m.s. = 350 GeV

Thank You everyone for Listening

Thank you to Daniel-san, Fujii-san, Suehara-san, Tanabesan, Watanuki-san, Miyamoto-san and others for your help and advice

BACKUP

BG Rejection Efficiency : 115 - 140 GeV

cut	signal	eff	BG_all	eff	S/N	S/sqrt(S+N)
no cut	2519	100%	1155348	100%	0.003	1074.871
best mu	2263	90%	975546	84.44%	0.003	987.697
M_inv	1748	69%	286945	24.84%	0.003	535.672
M_rec	1600	64%	16635	1.44%	0.093	128.977
P_Tdl	1579	63%	8361	0.72%	0.109	91.438
асор	1475	59%	7357	0.64%	0.206	85.773
θZ	1400	56%	5768	0.50%	0.220	75.947
		Signal effic	ciency		7 S/N ~0.22	

after M_rec cut

PT_dl, cos&Z, and acop cut seem quite effective for improving S/N

cut	4f_ZZ_I	4f_ZZ_sl	2f_Z_I	4f_WW_I	4fSingleZee_I	4fSingleZnn_I	4f_ZZWWMix_I
no cut	11745	48063	907810	33606	29804	7260	115192
best mu	9284	36246	807757	9658	12669	5526	94406
M_inv	4354	15617	257419	708	1452	2136	5262
M_rec	602	3167	32862	232	183	432	1238
P_Tdl	403	1724	4024	265	191	439	1314
асор	359	1568	3358	244	168	405	1255
θz	304	1371	2247	229	140.6	358	1118

track angle

Cos(track angle)

BG is More forward

BG Rejection Efficiency (OLD)

cut	signal	eff	BG_all	eff	S/N
no cut	35795	100%	2196102	100%	0.02
M_inv	10574	29.54%	289241	13.17%	0.04
M_rec	9669	27.01%	14558	0.66%	0.66
P_TdI	9532	26.63%	8792	0.40%	1.08
асор	8692	24.28%	7384	0.34%	1.18
θZ	8218	22.96%	6054	0.28%	1.36
dP/P ²	5820	16.26%	4195	<u>0.19</u> %	1.39
D0/δD0	5788	16.17%) 3925	0.18%	1.47
after M red	cut	Maybe cut too much signal		BG reduced to 0.2% !!	S/N improved to ~1.5

PT_dl, cos&Z, and acop cut seem quite effective for improving S/N

cut	4f_ZZ_I		4f_ZZ_sl	2f_Z_I	4f_WW_I	4fSingleZee_l	4fSingleZnn_l	4f_ZZWWMix_I
no cut		58330	145289	1606715	60118	97197	22282	206166
M_inv		7968	20901	246006	2360	2371	3535	6100
M_rec		827	2224	8169	930	295	626	1497
P_TdI		750	2141	2676	910	277	598	1440
асор		629	1860	2001	780	240	530	1346
θZ		527	1634	1342	701	183	480	1193
dP/P^2		357	1224	895	356	123	373	867
D0/δD0		351	1208	891	126	121	372	856

pseudo experiment

Generated 1000000 events according to histogram

recoil mass distribution for some BG processes

2f_Z_leptonic

This may be causing high energy BG in combined histogram

Calculation of Event Weight

Assign weight based on cross section, luminosity, polarization

event weight = pol_weight * (process_cross_section * assumed_integrated_luminosity)
/ (number_of_reconstructed_events)

Ec.m.s = 250 GeV luminosity 250fb-1

ILC polarization: ex) if eLpR : (PL+PR)/(PL-PR) : (e-, e+) = (0.8, 0.3) : > for electron: 90% is left-handed (10% is right handed) > for positron: 65% is left (35% is right)

jackieZH_higgs_ffh_Pe2e2h_eL_pR cross section 17.1432 weight 0.146252 jackieZH_4f_ZZ_leptonic_eL_pR weight 0.577543 cross section 157.96 jackieZH_4f_ZZ_semileptonic_eL_pR cross section 1422.14 weight 0.583475 jackieZH_2f_Z_leptonic_eL_pR weight 1.46019 cross section 21226.4 jackieZH_4f_WW_leptonic_eL_pR cross section 1564.21 weight 0.57305 jackieZH_4f_singleZee_leptonic_eL_pR cross section 1084.09 weight 0.580925 jackieZH_4f_singleZsingleWMix_leptonic_eL_pR cross section 922.048 weight 0.583633 jackieZH_4f_singleZnunu_leptonic_eL_pR cross section 192.753 weight 0.469835 jackieZH_4f_ZZWWMix_leptonic_eL_pR cross section 1636.04 weight 0.58329 jackieZH_higgs_ffh_Pe2e2h_eR_pL cross section 11.1593 weight 0.00889048 jackieZH_4f_ZZ_leptonic_eR_pL cross section 99.5061 weight 0.0290226 jackieZH_4f_ZZ_semileptonic_eR_pL cross section 713.526 weight 0.0349498 jackieZH_2f_Z_leptonic_eR_pL cross section 16470 weight 0.0875124 jackieZH_4f_WW_leptonic_eR_pL cross section 14.6917 weight 0.0128553 weight 0.0349882 jackieZH_4f_singleZee_leptonic_eR_pL cross section 1019.52 jackieZH_4f_singleZsingleWMix_leptonic_eR_pL cross section 21.5941 weight 0.0236186 jackieZH_4f_singleZnunu_leptonic_eR_pL weight 0.0172019 cross section 39.3186 jackieZH_4f_ZZWWMix_leptonic_eR_pL cross section 53.9555 weight 0.0236055

BG with large cross section

- 2f_Z_leptonic
- 4fZZWWMix_leptonic(eLpR)
- 4f_ZZ_semileptonic(eLpR)
- 4f_WW_leptonic(eLpR)

BG with large weight

- 2f_Z_leptonic
- other BGs gave similar weights

jackieZH_higgs_ffh_Pe2e2h_eL_pR weighted events 1387.78 unweighted events9489 raw events 17143 jackieZH_4f_ZZ_leptonic_eL_pR weighted events 357.499 unweighted events619 raw events 40000 jackieZH_4f_ZZ_semileptonic_eL_pR weighted events 1336.74 unweighted events2291 raw events 356465 jackieZH 2f Z leptonic eL pR weighted events 1975.64 unweighted events1353 raw events 2125992 jackieZH_4f_WW_leptonic_eL_pR weighted events 201.141 unweighted events351 raw events 399207 jackieZH_4f_singleZee_leptonic_eL_pR weighted events 127.223 unweighted events219 raw events 272923 jackieZH_4f_singleZsingleWMix_leptonic_eL_pR weighted events 0 unweighted events0 raw events 231052 jackieZH_4f_singleZnunu_leptonic_eL_pR weighted events 338.751 unweighted events721 raw events 60000 jackieZH_4f_ZZWWMix_leptonic_eL_pR weighted events 1020.76 unweighted events1750 raw events 410208 jackieZH_higgs_ffh_Pe2e2h_eR_pL weighted events 52.605 unweighted events5917 raw events 10983 jackieZH_4f_ZZ_leptonic_eR_pL weighted events 11.4349 unweighted events394 raw events 30000 jackieZH_4f_ZZ_semileptonic_eR_pL weighted events 29.8121 unweighted events853 raw events 178638 jackieZH_2f_Z_leptonic_eR_pL weighted events 79.0237 unweighted events903 raw events 1646769 jackieZH_4f_WW_leptonic_eR_pL weighted events 0.128553 unweighted events10 raw events 10000 jackieZH 4f singleZee leptonic eR pL raw events 254967 weighted events 3.18392 unweighted events91 jackieZH_4f_singleZsingleWMix_leptonic_eR_pL weighted events 0 unweighted events0 raw events 8000 jackieZH_4f_singleZnunu_leptonic_eR_pL weighted events 2.58029 unweighted events150 raw events 20000 jackieZH_4f_ZZWWMix_leptonic_eR_pL weighted events 4.22539 unweighted events179 raw events 20000

sig:	weighted	events:	1440.39	unweighted	events:	15406
BG:	weighted	events:	5488.14	unweighted	events:	9884
all:	weighted	events:	6928.53	unweighted	events:	25290