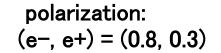
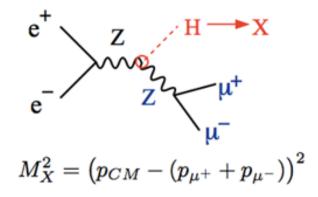
Higgs Recoil Mass Study

Feb 7, 2014

Jacqueline Yan

Komamiya Lab, Univ. of Tokyo


CV 520


recoil mass study using $e+e- \rightarrow Zh \rightarrow \mu+\mu-h$ @ Ec.m.s. = 250 GeV, L = 250 fb-1

<u>Goal:</u>

precise measurement of

- Higgs mass
- cross section σ_{H} : N = $\sigma * L * \varepsilon$

Changes from previous week

- □ data selection optimization (adjust cut window for invariant mass and coplanarity)
- ightarrow improved signal efficiency and significance
- estimate error on efficiency and cross section
- compare with results between difference polarization (-0.8, +0.3) vs (-0.8, 0) vs (0, 0)
- added all signal and BG processes, just to make sure

DBD Samples

event weight = pol_weight * (process_cross_section * assumed_integrated_luminosity)
/ (number_of_reconstructed_events)

Signal sample:

Pe2e2h.eL.pR & Pe2e2h.eR.pL

relevant BG process for Zmumu

• 4f_ZZ_leptonic

• 4f_ZZ_semileptonic	
• 2f 7 Jentonic	

dominant ones

	- · -		
•	4f_	_WW_	leptonic

- 4fSingleZee_leptonic
- 4fSingleZnunu_leptonic
- 4f_ZZWWMix_leptonic

eLpR	cross sec	weight
higgs	17.14	0.146
BG in order of	large cross section	
2f_Z_I	21226.4	1.46
4f_ZZWWMix_I	1636.04	0.583
4f_WW_I	1564.21	0.573
4f_ZZ_sl	1422.14	0.583
4f_singleZee_l	1084.1	0.581
4f_singleZnn_l	192.75	0.47
4f_ZZ_I	157.96	0.578

Muon Selection

reject neutrals

- Ptot > 5 GeV
- small E_cluster / P_total < 0.5
- opposite charge
- Best track selection cos(track angle) < 0.95 |D0/δD0| < 4

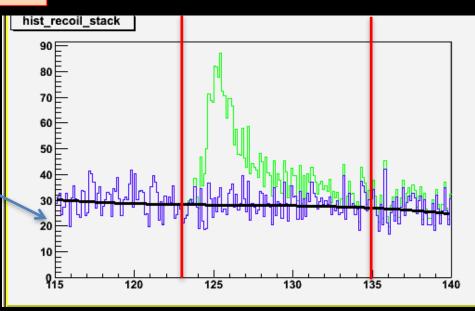
Best Z Candidate Selection

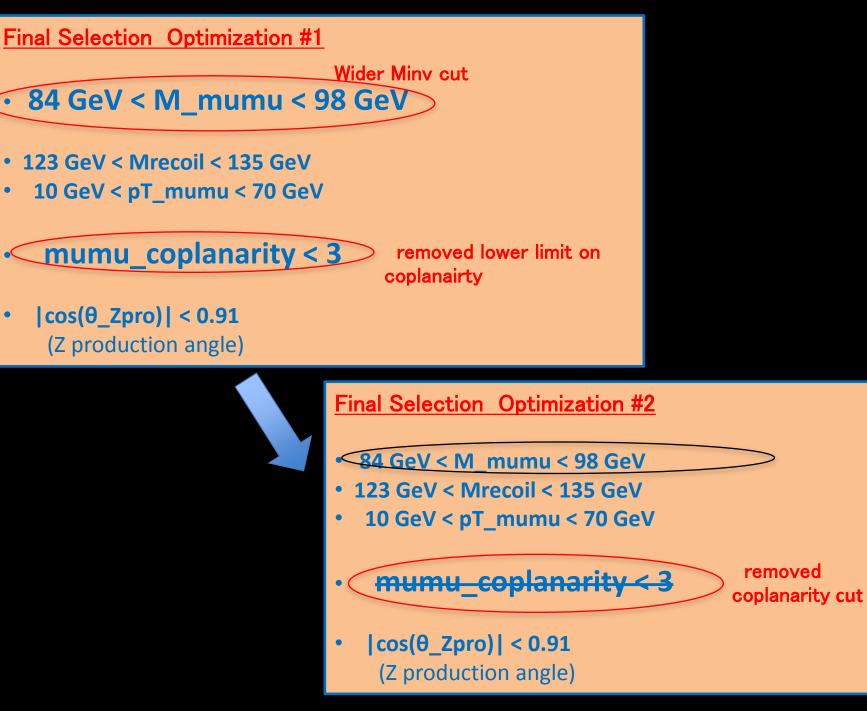
2 mu candidates with opposite charge

if several possibilities :

choose pair with invariant mass closest to Z mass

Next optimized

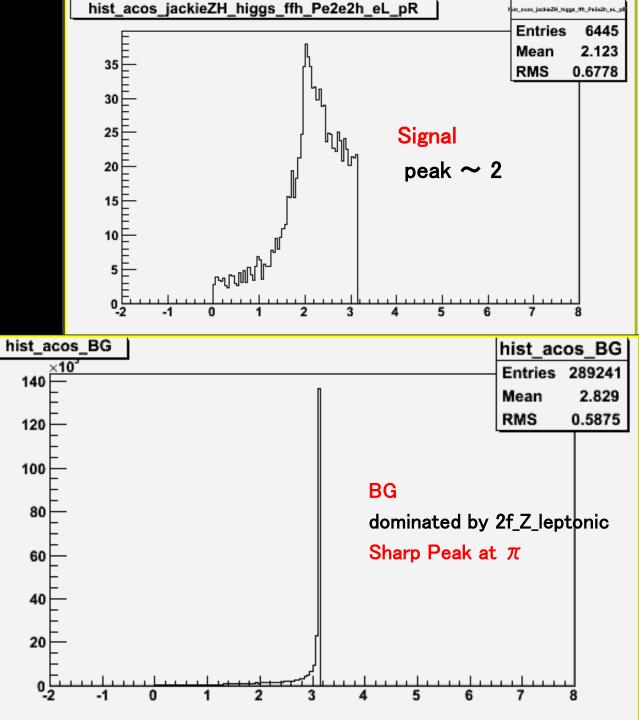

these parameters

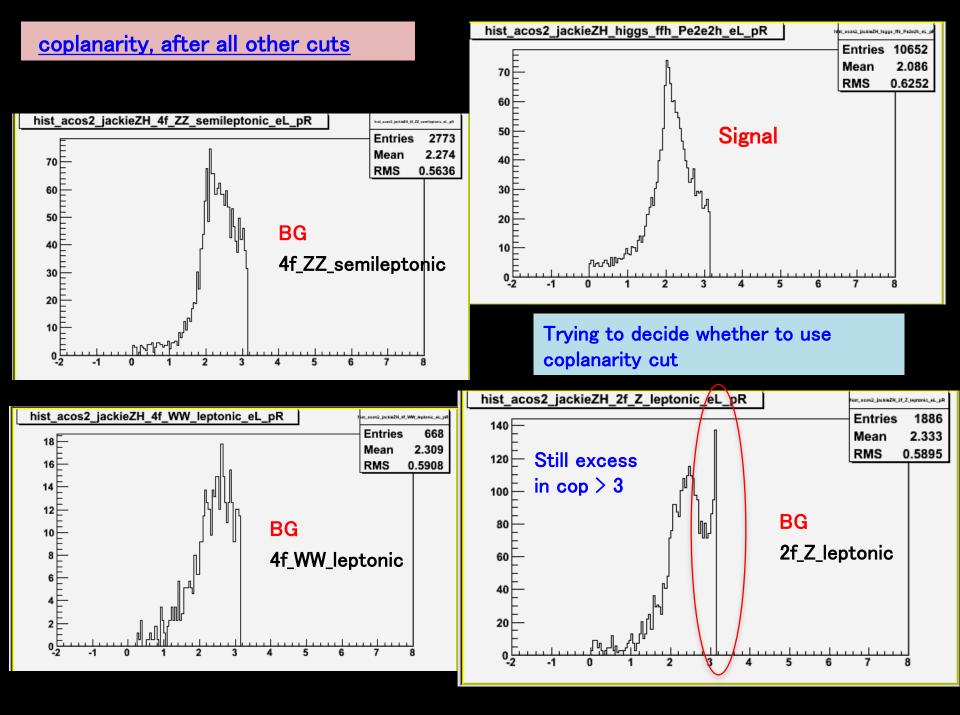

Final Selection from LAST WEEK analysis after filling root files

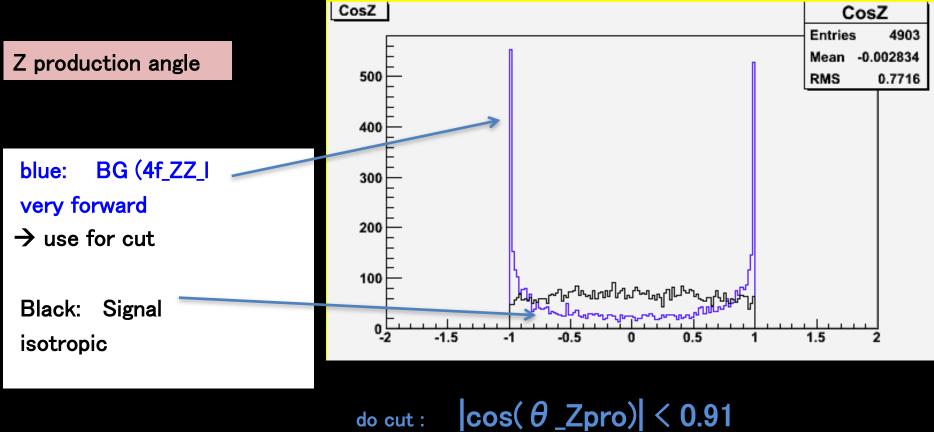
- 86 GeV < M_mumu < 95 GeV
- 123 GeV < Mrecoil < 135 GeV
- 10 GeV < pT_mumu < 70 GeV
- 0.2 < mumu_coplanarity < 3</p>
- |cos(θ_Zpro)| < 0.91
 (Z production angle)</pre>

Evaluate data selection efficiency in within range of 123 - 135 GeV

calculate recoil mass with correction for 14 mrad beam crossing angle




removed


Comparison of Some Parameters between Signal and BG Processes

<u>coplanarity</u>, <u>before cut</u>

Tried to cut: 0.2 < cop < 3 or just cop < 3

BG Rejection Efficiency : 123 – 135 GeV : last week

cut	signal	eff	BG_all	eff	S/N	S/sqrt(S+N)
no cut	216	0 100%	50461	100%	0.043	9.416
best mu	193	8 90%	34109	67.59%	0.057	10.207
M_inv	160	0 74%	13283	26.32%	0.120	13.115
M_rec	148	2 69%	8097	16.05%	0.183	15.142
P_Tdl	146	3 68%	4032	7.99%	0.363	19.736
acop	136	6 63%	3546	7.03%	0.385	19.490
θZ	129	6 60%	2788	5.53%	0.465	20.280
		ianal efficiency	60 %			1

Signal efficiency 60 %

S/N → 0.47

Significance ~20.3

Improvement after change to coplanarity < 3 (remove lower limit) <S> = 1421, Sig eff 66 %, S/B = 0.47, S/sqrt(S+B) = 20.6

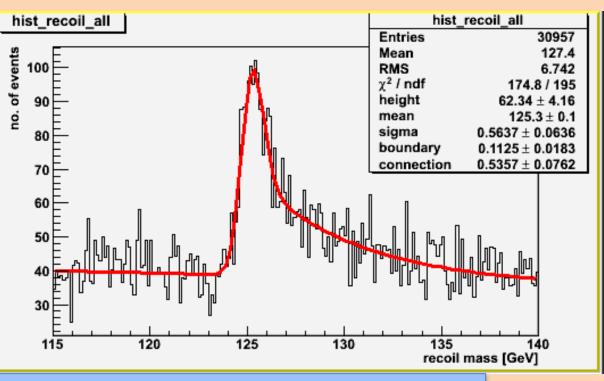
after M_rec cut cos dz cut seem quite effective for improving S/N

cut	4f_ZZ_I	4f_ZZ_sl	2f_Z_I	4f_WW_I	4fSingleZee_I	4fSingleZnn_l	4f_ZZWWMix_I
no cut	989	4163	27574	5735	2295	810	8896
best mu	753	3251	19228	1543	880	668	7787
M_inv	337	1264	9865	219	151	356	1091
M_rec	204	765	6011	136	95	224	663
P_Tdl	181	742	2021	134	92	218	643
0.2 < cop < 3	156	680	1695	124	80	199	610
θz	132	596	1164	115	69	175	537

NEWEST

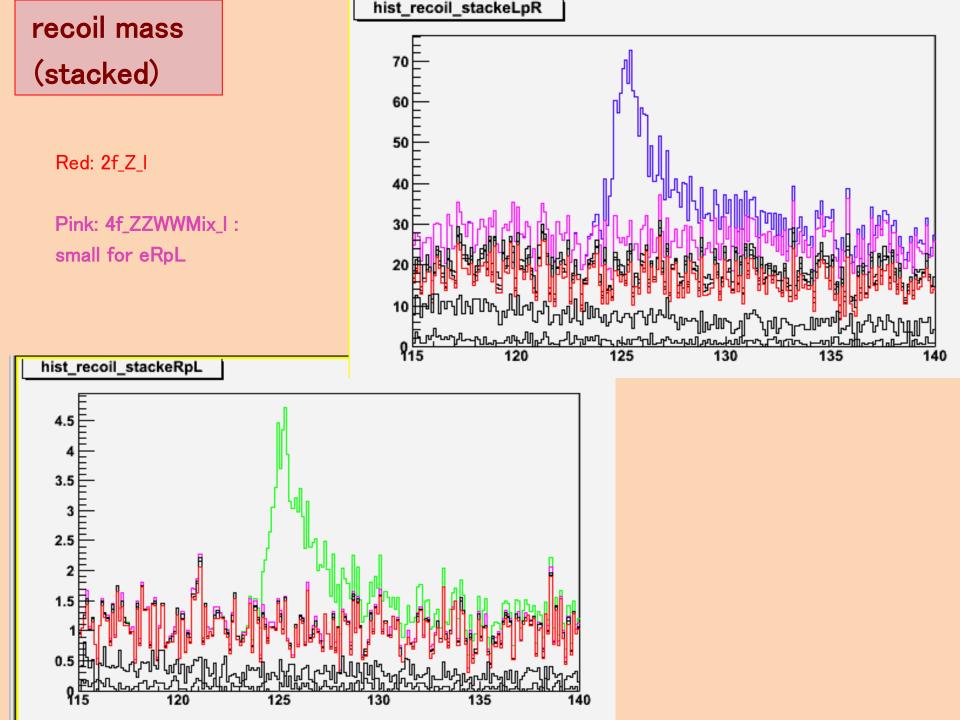
BG Rejection Efficiency : 123 - 135 GeV

removed coplanarity altogether


out	signal	eff	BG_all	eff	S/N	S/sqrt(S+	N)
no cut	2160	100%	50461	100%	0.043	9.416	
oest mu	1938	90%	34109	67.59%	0.057	10.207	
34 <m_inv <98<="" th=""><th>1742</th><th>81%</th><th>15359</th><th>30.44%</th><th>0.120</th><th>13.321</th><th></th></m_inv>	1742	81%	15359	30.44%	0.120	13.321	
123 <m_rec <135<="" th=""><th>1606</th><th>74%</th><th>9330</th><th>18.49%</th><th>0.183</th><th>15.357</th><th></th></m_rec>	1606	74%	9330	18.49%	0.183	15.357	
10 <p_tdl<70< th=""><th>1584</th><th>73%</th><th>4785</th><th>9.48%</th><th>0.363</th><th>19.848</th><th></th></p_tdl<70<>	1584	73%	4785	9.48%	0.363	19.848	
cos(θ Ζ)<0.91	1491	69%	3637	7.21%	0.385	20.821	\sum
	Signal ej	fficiency 69	70	S/N	→ 0.39	Significanc	e ~20.8
cut	4f_ZZ_I	4f_ZZ_sl	2f_Z_I	4f_WW_I	4fSingleZe 4	fSingleZr 4f	ZZWWN
no cut	989	4163	27574	5735	2295	810	8896
best mu	753	3251	19228	1543	880	668	7787
84 <m_inv <98<="" th=""><th>379</th><th>1407</th><th>11047</th><th>350</th><th>174</th><th>392</th><th>1612</th></m_inv>	379	1407	11047	350	174	392	1612
123 <m_rec <135<="" th=""><th>229</th><th>854</th><th>6710</th><th>212</th><th>108</th><th>242</th><th>976</th></m_rec>	229	854	6710	212	108	242	976
10 <p_tdl<70< th=""><th>205</th><th>831</th><th>2259</th><th>208</th><th>105</th><th>235</th><th>944</th></p_tdl<70<>	205	831	2259	208	105	235	944
cos(θ Z)<0.91	168	719	1447	193	86	200	824

recoil mass

fitted recoil mass : Mh =125.3 GeV +/- 70 MeV


calculate recoil mass with correction for 14 mrad beam crossing angle

after implementing all cuts

BG: 3rd order polynomial

signal : GPET: 5 parameters : Gaus (left-side) , Gaus + expo (right side)

statistic error of cross section σs

we want to **maximize** significance = <S>/ sqrt(<S> +) i.e. optimize (efficiency ε) x (purity $\pi = \langle S \rangle / \langle N \rangle$)

expected # of signal events $\langle S \rangle = \varepsilon * L^* \sigma s$ (L: integrated Luminosity) assume (B) in signal region is "known" with small uncertainty

if observe N events : <Δσmeas> / <σmeas> = inversely of {significance = <S> / sqrt(<S> +) }

Error on efficiency = n/N

if detect n signal events out of N events : **efficiency = n/N** (assume N is constant) stat error on n : $\Delta n = sqrt(N^*\epsilon^*(1-\epsilon)) \rightarrow \Delta n/n = sqrt((1-\epsilon)/n)$ higher ε , larger n is better

binomial distr.

My updated results:

- $\epsilon = 0.69$
- < n> = 1491

•
$$<\Delta n > / < n > = sqrt((1-\epsilon)/) = 1.4 \%$$

• purity := <n> / sqrt(<n> +) = 20.8

<Δσmeas> / <σmeas> $= 1 / sqrt(< n > \pi) = 4.8 \%$

After including all BG and signal processes

added all other (possibly not relevant) signal and BG processes signal : added Pqqh, Pnnh, Pe1e1h (Zee), Pe3e3h (Ζττ)

what did I miss ?

Events left after all cuts:

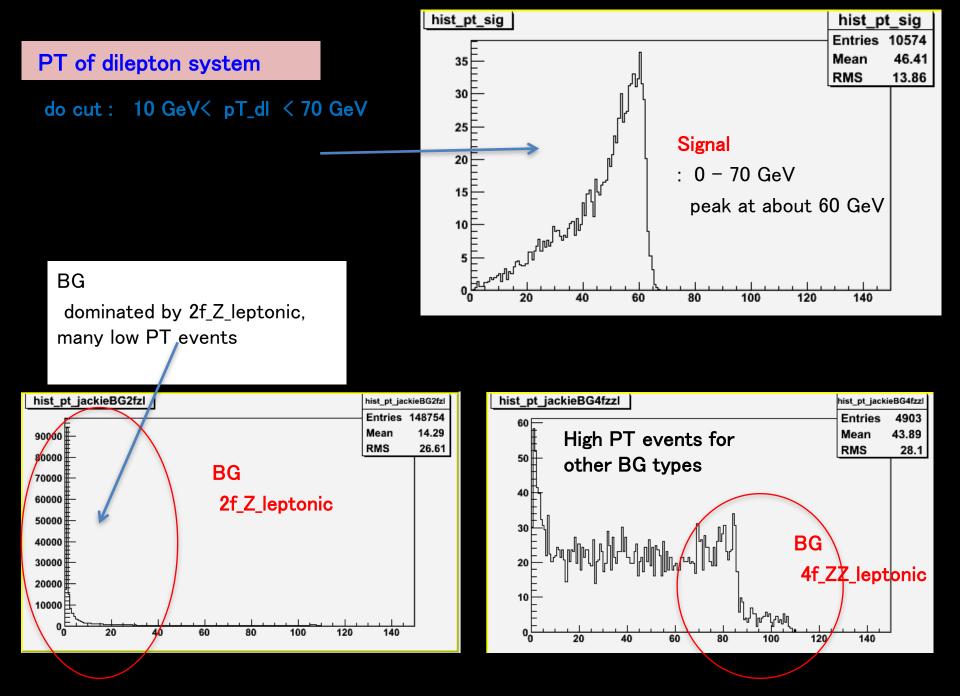
- WW_sl ~ 130 *oh no.....*
- Pqqh <~7
- Pnnh <~4
- All others ~ 0

Now results are (after all cuts) :

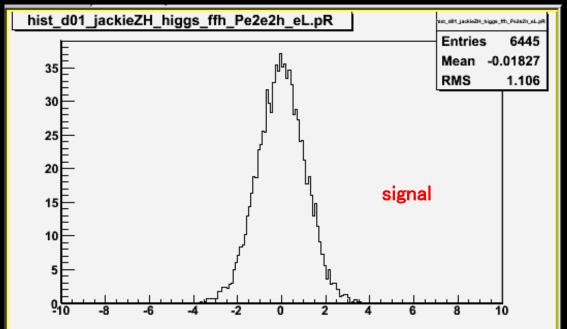
<S> = 1508, sig eff = 0.68, <S>/B = 0.40, <S>/sqrt(<S>+B) = 20.7 *not that much difference*

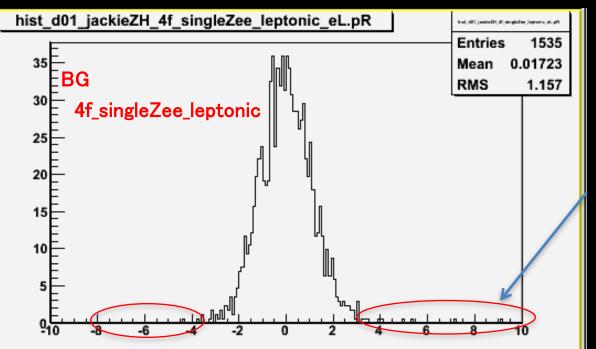
Compare different polarization scenarios

	(-0.8,0.3)	(-0.8,0)	(0,0)
< \\Delta S >	1491	1183	1005
efficiency	0.69	0.69	0.686
<s>/sqrt(<s>+)</s></s>	20.82	18.63	18.04
<s>/</s>	0.41	0.42	0.48
< \$ \$>/<\$>	1.52%	1.62%	1.77%
<σ>/σ	4.80%	5.37%	5.54%


Summary

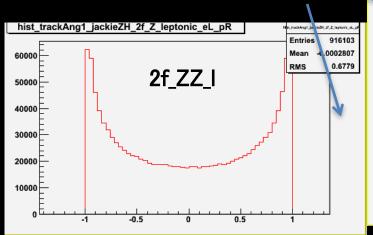
- Higgs recoil mass study using $e+e- \rightarrow Zh \rightarrow \mu+\mu-h$ @ Ec.m.s. = 250 GeV, L = 250 fb-1
- improved data selection method
- included all other BG processes (tau related , hadronic , ect..... just to be sure)
- updated results: signal $\varepsilon = 69\%$, S/B ~ 0.4, S/sqrt(S+B) ~ 20.7
- Compared different polarization scenarios : (-0.8, 0.3) vs (-0.8, 0) vs (0,0)

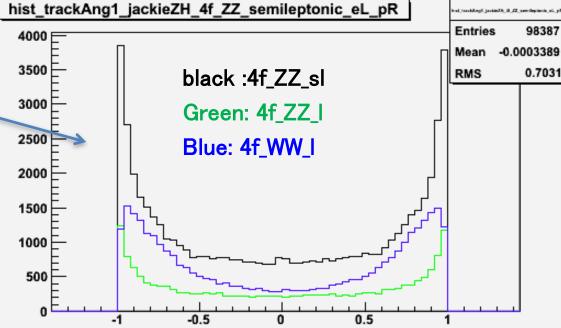

Further Plans


- further optimize data selection method
- try higher statistics (L=20000 fb-1) sample only available for 250 GeV (?)
- move on soon to analysis at Ec.m.s. = 350 GeV

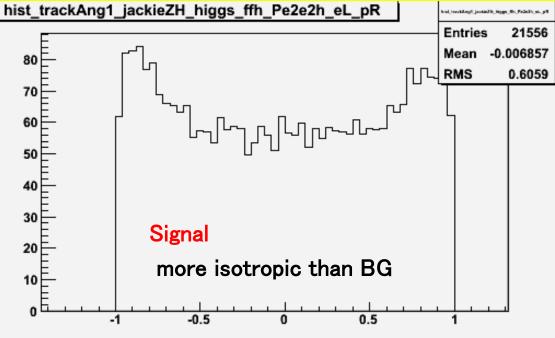
BACKUP

Impact parameter D0/δD0




For some BG processes exceed +/- 4 slightly

do cut : $|D0/\delta D0| < 4$


Cos(track angle)

BG is More forward

do cut : cos(trackAngle) < 0.95

How to estimate error of cross section σ s?

```
when measuring \sigma s, we want to maximize \langle S \rangle / sqrt(\langle S \rangle + \langle B \rangle)
i.e. optimize (efficiency \varepsilon) x (purity \pi)
   Why ??
```

A:

•expected # of signal events $\langle S \rangle = \varepsilon * L^* \sigma s$ (L: integrated Luminosity)

•Expected # of BG events (B) in signal region assume is "known" with small uncertainty compared to stat. error on <S> • total # of events $\langle N \rangle = \langle S \rangle + \langle B \rangle = \varepsilon * L^* \sigma s + \langle B \rangle$

```
if observe N events : \sigma meas = (N - <B>) / (\epsilon*L)
 Stat error <\Delta\sigmameas> = \Delta N / (\epsilon^*L) = sqrt(<N>)/(\epsilon^*L)
```

```
Purity \pi = \langle S \rangle / (\langle S \rangle + \langle B \rangle) = \langle S \rangle / \langle N \rangle
 sqrt(\langle S \rangle \pi) = \langle S \rangle / sqrt(\langle S \rangle + \langle B \rangle)
<N> = <S> / \pi = \epsilon * L* \sigma s / \pi
    <\Delta\sigma meas> = sqrt(\epsilon * L* \sigma s/\pi) / (\epsilon * L) = sqrt(\sigma s/\epsilon * L* \pi)) 
 <\Delta\sigma meas> / <\sigma meas> = 1/ sqrt(\epsilon * L* \sigma s*\pi) = 1 / sqrt(<S>*\pi)
```

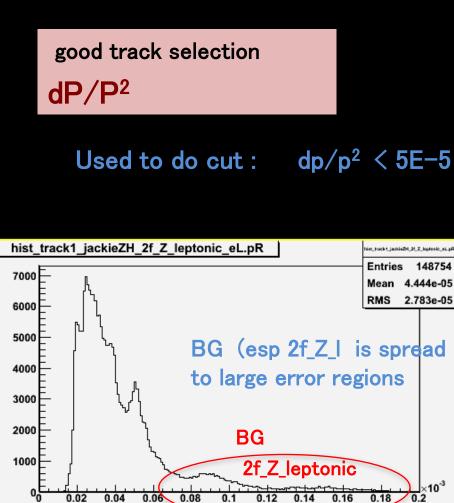
σs measurement error is inversely proportional to <S> / sqrt(<S> +) !!

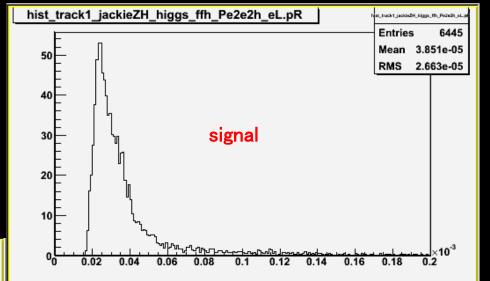
Estimate Stat errors

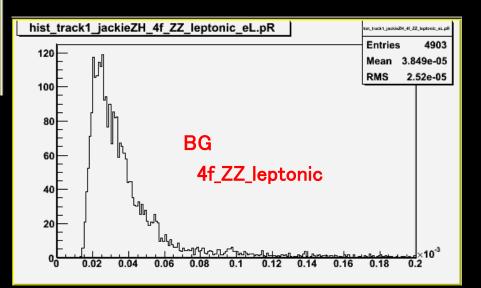
Error on <n> (<S>) depend on **binomial distr.** if detect n out of n events : **efficiency = n/N** stat error on n : $\Delta n = sqrt(N^*\epsilon * (1-\epsilon)) = sqrt(n^*(1-\epsilon))$ $\Delta n/n = sqrt((1-\epsilon)/n)$ (c.f. If n is big \rightarrow Poisson distr.: 1/sqrt(n))

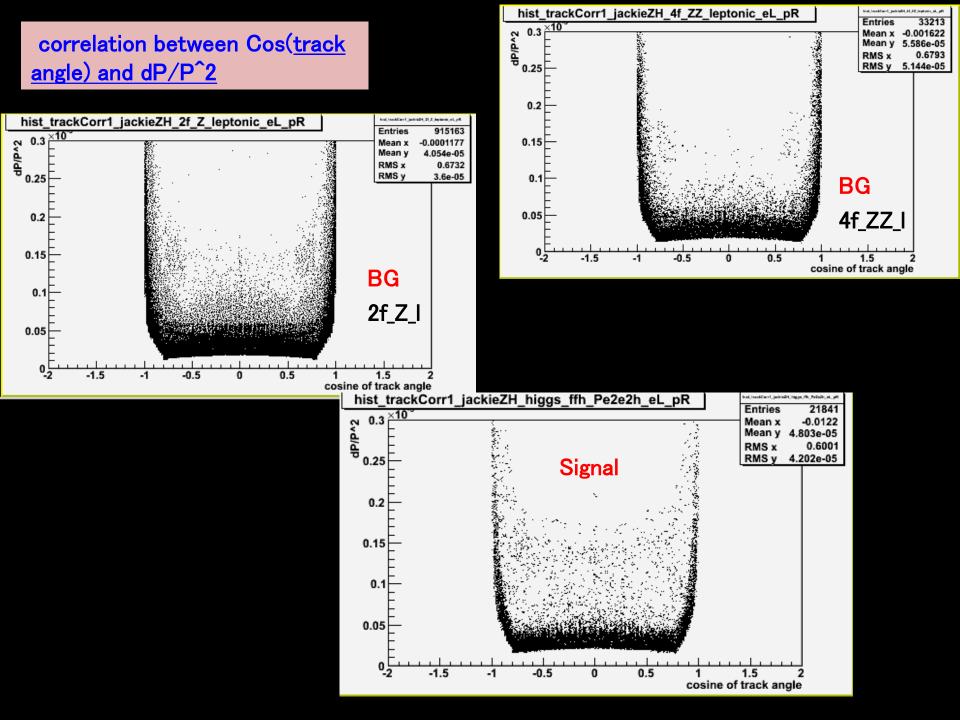
higher ε , larger n is better

My updated results:

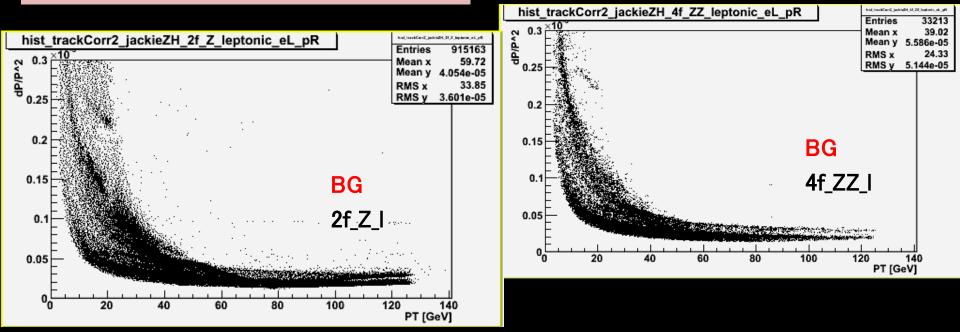

• ε = 0.66

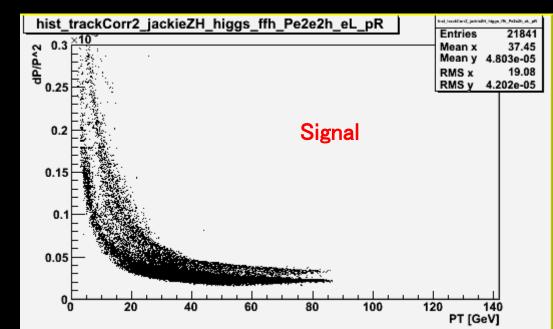

- < n> = 1422 (= <S>)
- $<\Delta n > < n > = sqrt((1-\epsilon)/(n>) = 1.6 \% \rightarrow < n> = 1422 +/-23$

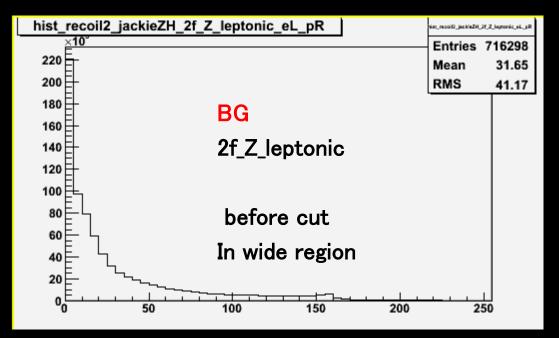

purity : $sqrt(<n>*\pi) = <n> / sqrt(<n> +) = 20.6$ Error of cross section $<\Delta\sigma$ meas> / $<\sigma$ meas> = 1 / sqrt($<n>*\pi$) = 4.9 %

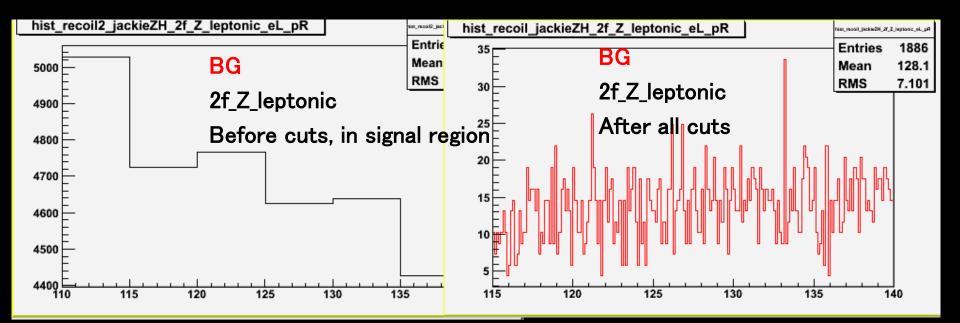

dependent on sample size \rightarrow try higher statistics Now integrated L = 2000 fb-1

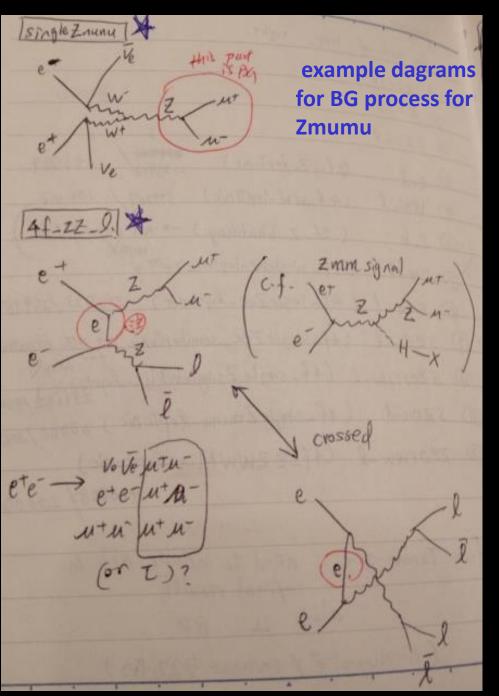
 $\sigma s = \langle n \rangle / (L^* \epsilon) = 1422/2000/0.66 = 1.077 \text{ fb}$

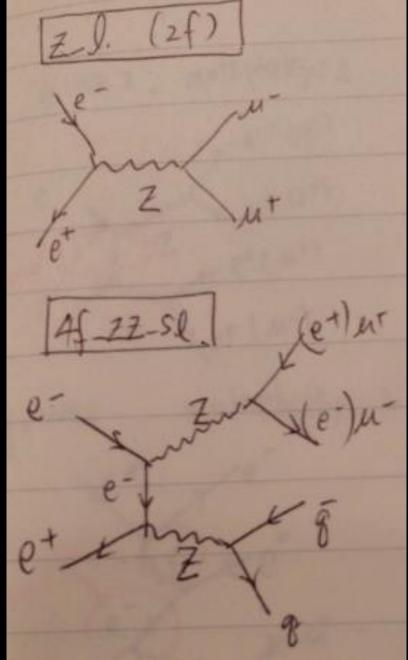


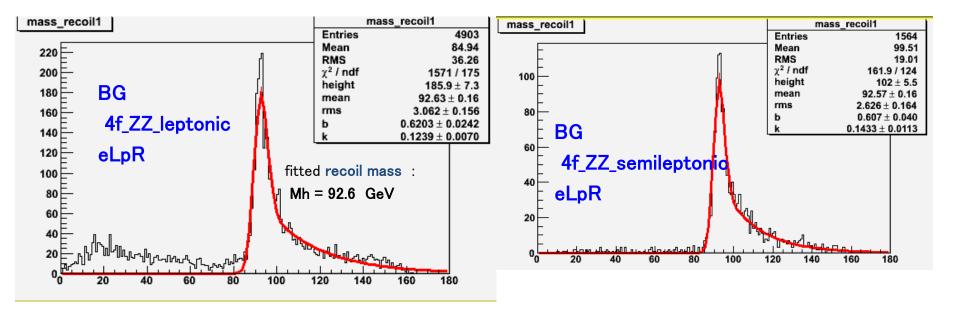


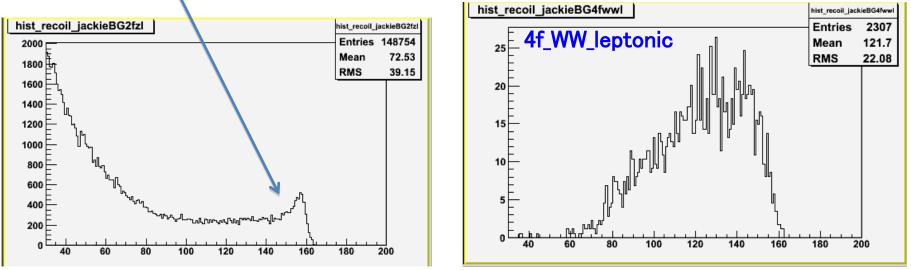



correlation between <u>PT and dP/P²</u>






Recoil mass of 2f_Z_leptonic before and after all <u>cuts</u>



recoil mass distribution for some BG processes

2f_Z_leptonic

This may be causing high energy BG in combined histogram

