Update on $\nu \bar{\nu} H, H \rightarrow \mu \mu$

C. Calancha calancha@post.kek.jp

2014, Feb 7

C. Calancha (KEK)

 ${\rm H} \rightarrow \mu \; \mu$ 1 TeV Update

Update on ${\rm H} \rightarrow \mu \mu$ with improved analysis methods

• Started to work on ${\rm H} \rightarrow \mu \mu$ update.

Plan

Final selection with TMVA.

⁽²⁾ Weigth on $\sigma(M(\mu^+, \mu^-))$ event by event (Mikael suggestion).

Mikael Suggestion

- Dimuon mass given by muon momentum measurement.
 - Variance on $M(\mu^+, \mu^-) \longrightarrow$ error propagation from momentum uncertainty.
- Well measured signal events have small $M(\mu^+, \mu^-)$ errors.
- Badly measured background events lying around signal window would have larger $M(\mu^+,\mu^-)$ errors.
- \rightarrow Variable 1/ $\sigma(M(\mu^+,\mu^-))$ could improve S/B.

 $(M(\mu^+,\mu^-))$ depends simetrically on both muons)

$$\sigma^{2}(\mathbf{M}(\mu^{+},\mu^{-})) = \frac{1}{\mathbf{M}(\mu^{+},\mu^{-})^{2}} [\mathbf{P}_{1}^{\mathrm{T}} \Sigma_{2} \mathbf{P}_{1} + \mathbf{P}_{2}^{\mathrm{T}} \Sigma_{1} \mathbf{P}_{2}]$$

(*) P_i column vector $x^i = (E, px, py, pz), P_i^T$, row vector $x_i = g_{ij}x^j = (E, -px, -py, -pz)$

(g_{ij} metric in the Minkowski space: [+1 -1 -1 -1]), Σ_i covariance matrix of muon i.

Weight on $\sigma(M(\mu^+, \mu^-))$

$$\sigma^{2}(\mathbf{M}(\mu^{+},\mu^{-})) = \frac{1}{\mathbf{M}(\mu^{+},\mu^{-})^{2}} [\mathbf{P}_{1}^{\mathrm{T}} \Sigma_{2} \mathbf{P}_{1} + \mathbf{P}_{2}^{\mathrm{T}} \Sigma_{1} \mathbf{P}_{2}]$$

 $\begin{pmatrix} \star \\ P_i \text{ column vector } x^i = (E, px, py, pz), P_i^T, \text{ row vector } x_i = g_{ij}x^i = (E, -px, -py, -pz) \\ g_{ij} \text{ metric in the Minkowski space: } [+1 - 1 - 1 - 1]), \Sigma_i \text{ covariance matrix of muon i.}$

- I assumed $Var(m_i) = 0$ (m_i , muon mass).
- Even without mass constraint, at 1 TeV, i would expect $\lim \frac{Var(m)}{Var(p)} \approx 0$

ReconstructedParticle.getCovMatrix() returns null

- This covariance matrix is not filled (why not?).
 - \rightarrow Need to perform additional algebra.
 - Covariance matrix from associated track is available.
 - In helix parameterization basis: $d_0, z_0, \Omega, \phi, tan\lambda$
 - If 3 is the Jacobian matrix from helix parameters to (px,py,pz,E)

 $\longrightarrow \Sigma'_i = \mathfrak{J} \Sigma_i \mathfrak{J}^T$, covariance matrix in momenta space.

After some derivative exercises ...

 $\rightarrow \Sigma'_i = \mathfrak{J} \Sigma_i \mathfrak{J}^T$, covariance matrix in momenta space.

- Could be useful storing this covariance matrix for charged particles.
- so that, we could retrieve it by calling ReconstructedParticle.getCovMatrix(). (Currently returning null matrix)

Status / Plan

Comeback to ${\rm H} \rightarrow \mu \mu$

Plan to update analysis with accumulated experience.

- Final selection TMVA-based.
- Check if $\sigma(M(\mu^+, \mu^-))$ variable could improve S/N.
 - Found that covariance matrix in ReconstructedParticle not stored.
 - Getting it from propagation uncertainty from track cov. matrix.

Plan

- Short term
 - Finish with the cov. matrix evaluation algorithm in momenta space.
 - Compare new variable $\sigma(M(\mu^+, \mu^-))$ for signal/background around signal window.
- Longer term
 - Keep working in updated analysis implementing new ideas/tools.