SUSY precission studies at the ILC

Mikael Berggren¹

¹DESY, Hamburg

LCForum, Bonn, April 2014

Outline

- Outline
- Studying SUSY in rich models
- A bench-mark point
 - STC4 @ 500 GeV
- Outlook & Conclusions

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy compared to things like Higgsinos only, WIMP only: Lots to see.
- Hard compared to things like Higgsinos only, WIMP only: Lots to Disentangle.

- When data starts coming in, what is is first light?
- How do we quickly determine a set of approximate model parameters?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach?
- Spectrum in continuum vs. threshold-scans?
- ullet Special points, eg. between $ilde{ au}_1 ilde{ au}_2$ and $ilde{ au}_2 ilde{ au}_2$ thresholds
- Clean vs. high cross-section

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy compared to things like Higgsinos only, WIMP only: Lots to see.
- Hard compared to things like Higgsinos only, WIMP only: Lots to Disentangle.

- When data starts coming in, what is is first light?
- How do we quickly determine a set of approximate model parameters?
- What is then the optimal use of beam-time in such a scenario?
- And in a staged approach?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $ilde{ au}_1 ilde{ au}_2$ and $ilde{ au}_2 ilde{ au}_2$ thresholds
- Clean vs. high cross-section

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy compared to things like Higgsinos only, WIMP only: Lots to see.
- Hard compared to things like Higgsinos only, WIMP only: Lots to Disentangle.

- When data starts coming in, what is is first light?
- How do we quickly determine a set of approximate model parameters?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach?
- Spectrum in continuum vs. threshold-scans?
- ullet Special points, eg. between $ilde{ au}_1 ilde{ au}_2$ and $ilde{ au}_2 ilde{ au}_2$ thresholds
- Clean vs. high cross-section

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy compared to things like Higgsinos only, WIMP only: Lots to see
- Hard compared to things like Higgsinos only, WIMP only: Lots to Disentangle.

- When data starts coming in, what is is first light?
- How do we quickly determine a set of approximate model parameters?
- What is then the optimal use of beam-time in such a scenario?
- And in a staged approach?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy compared to things like Higgsinos only, WIMP only: Lots to see.
- Hard compared to things like Higgsinos only, WIMP only: Lots to Disentangle.

- When data starts coming in, what is is first light?
- How do we quickly determine a set of approximate model parameters?
- What is then the optimal use of beam-time in such a scenario?
- And in a staged approach?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy compared to things like Higgsinos only, WIMP only: Lots to see.
- Hard compared to things like Higgsinos only, WIMP only: Lots to Disentangle.

- When data starts coming in, what is is first light?
- How do we quickly determine a set of approximate model parameters?
- What is then the optimal use of beam-time in such a scenario?
- And in a staged approach?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy compared to things like Higgsinos only, WIMP only: Lots to see
- Hard compared to things like Higgsinos only, WIMP only: Lots to Disentangle.

- When data starts coming in, what is is first light?
- How do we quickly determine a set of approximate model parameters?
- What is then the optimal use of beam-time in such a scenario?
- And in a staged approach?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.

What we look for and like to measure is:

- NLSP pairs
 ⇔ Missing energy and momentum + pairs of the SM partner (τ
 ₁ gives τ, ẽ gives e, ẽ gives t gives jet, ...)
 - Note

 Anything but NLSP pairs: Cascade decays: Still Missing energy and momentum, but id of SM particles can be mixed.

What we look for and like to measure is:

- NLSP pairs
 ⇔ Missing energy and momentum + pairs of the SM partner (τ̃₁ gives τ, ẽ gives e, t̃ gives t gives jet, ...)
 - Note:
 - Amount of missing stuff might span a wide range. Eg. small mass-difference between heavy sparticles gives large missing E, but little missing p.
 - If NLSP is a bosino, SM partner is a IVB, possibly far off-shell. At small mass differences, the set of SM particles might be non-obvious
- Anything but NLSP pairs: Cascade decays: Still Missing energy and momentum, but id of SM particles can be mixed.

What we look for and like to measure is:

- NLSP pairs
 ⇔ Missing energy and momentum + pairs of the SM partner (τ̃₁ gives τ, ẽ gives e, t̃ gives t gives jet, ...)
 - Note:
 - Amount of missing stuff might span a wide range. Eg. small
 mass-difference between heavy sparticles gives large missing E, but
 little missing p.
 - If NLSP is a bosino, SM partner is a IVB, possibly far off-shell. At small mass differences, the set of SM particles might be non-obvious.
- Anything but NLSP pairs: Cascade decays: Still Missing energy and momentum, but id of SM particles can be mixed.

What we look for and like to measure is:

- NLSP pairs
 ⇔ Missing energy and momentum + pairs of the SM partner (τ
 † gives τ, ε gives e, t gives t gives jet, ...)
 - Note:
 - Amount of missing stuff might span a wide range. Eg. small
 mass-difference between heavy sparticles gives large missing E, but
 little missing p.
 - If NLSP is a bosino, SM partner is a IVB, possibly far off-shell. At small mass differences, the set of SM particles might be non-obvious.
- Anything but NLSP pairs: Cascade decays: Still Missing energy and momentum, but id of SM particles can be mixed.

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f \bar{f} \nu \nu$
- Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - ullet e⁺e⁻ ightarrowe⁺e⁻ff, with both e⁺e⁻ un-detected
 - $e^+e^- \rightarrow ff\gamma$, with γ un-detected.

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f\bar{f}\nu\nu$
- Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - c⁺c⁻ →e⁺e⁻γγ → e⁺e⁻ff, with both e⁺e⁻ un-detected.
 e⁺e⁻ →ffγ, with γ un-detected.

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f\bar{f}\nu\nu$
- Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow f\bar{f}\gamma$, with γ un-detected.

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f\bar{f}\nu\nu$
- Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow f\bar{f}\gamma$, with γ un-detected.

Observables:

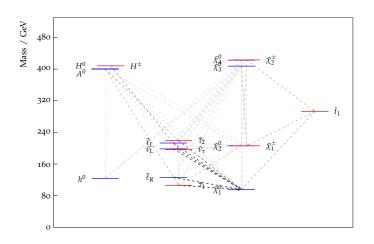
Observable	Gives	If
Edges (or average and		not too far from
width)	Masses	threshold
Shape of spectrum	Spin	
Angular distributions	Mass, Spin	
Invariant mass distributions		
from full reconstruction	Mass	cascade decays
Angular distributions from		
full reconstruction	Spin, CP,	masses known
Un-polarised Cross-section		
in continuum	Mass, coupling	
Polarised Cross-section	Mass, coupling,	
in continuum	mixing	
Decay product polarisation	Mixing	$\tilde{ au}$ decays
Threshold-scan	Mass(es)	

Example: STC4

STC4-8

- 11 parameters.
- Separate gluino
- Higgs, un-coloured, and coloured scalar parameters separate

Parameters chosen to deliver all constraints (LHC, LEP, cosmology, low energy).


At $E_{CMS} = 500$ GeV:

- All sleptons available.
- No squarks.
- Lighter bosinos, up to $\tilde{\chi}^0_3$ (in $e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_3$)

(See H. Baer, J. List, arXiv:1307:0782.)

STC4 mass-spectrum

Channels and observables at 250, 350 and 500 GeV

Channel	Threshold	Available at	Can give
$ ilde{ au}_1 ilde{ au}_1$	212	250	$M_{\widetilde{\tau}_1}$, $\widetilde{\tau}_1$ nature,
			au polarisation
$ ilde{\mu}_{ m R} ilde{\mu}_{ m R}$	252	250+	+ $M_{ ilde{\mu}_{ m R}}, M_{ ilde{\chi}_1^0}, ilde{\mu}_{ m R}$ nature
$\tilde{e}_R \tilde{e}_R$	252	250+	+ $M_{\tilde{e}_R}$, $M_{\tilde{\chi}_1^0}$, \tilde{e}_R nature
$ ilde{\chi}_1^0 ilde{\chi}_2^{0*)}$	302	350	+ $M_{\tilde{\chi}^0_2}$, $M_{\tilde{\chi}^0_1}$, nature of $\tilde{\chi}^0_1$, $\tilde{\chi}^0_2$
$ ilde{ au}_1 ilde{ au}_2^{*)}$	325	350	$+M_{\widetilde{\tau}_2}\theta_{mix}\widetilde{\tau}$
$\tilde{e}_{R}\tilde{e}_{L}^{*)}$	339	350	+ $M_{\tilde{e}_L}$, $\tilde{\chi}_1^0$ mixing, \tilde{e}_L nature
$\tilde{\nu}_{\tilde{\tau}}\tilde{\nu}_{\tilde{\tau}}$	392	500	7 % visible BR ($\rightarrow \tilde{\tau}_1 W$)
$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm *)}$	412	500	+ $M_{ ilde{\chi}_{1}^{\pm}}$, nature of $ ilde{\chi}_{1}^{\pm}$
$\tilde{\mathrm{e}}_{\mathrm{L}}\tilde{\mathrm{e}}_{\mathrm{L}}^{*)}$	416	500	+ $M_{\tilde{\mathrm{e}}_{\mathrm{L}}}$, $M_{\tilde{\chi}_{1}^{0}}$, $\tilde{\mathrm{e}}_{\mathrm{L}}$ nature
$ ilde{\mu}_{ extsf{L}} ilde{\mu}_{ extsf{L}}^{*)}$	416	500	+ $M_{ ilde{\mu}_{ m R}}, M_{ ilde{\chi}_1^0}, ilde{\mu}_{ m R}$ nature
$ ilde{ au}_2 ilde{ au}_2^{*)}$	438	500	+ $M_{ ilde{ au}_2}, M_{ ilde{\chi}_1^0}, ilde{ au}_2$ nature, $ heta_{ extit{mix}} ilde{ au}$
$\tilde{\chi}_1^0 \tilde{\chi}_3^{0*)}$	503	500+	+ $M_{\tilde{\chi}^0_3}$, $M_{\tilde{\chi}^0_1}$, nature of $\tilde{\chi}^0_1$, $\tilde{\chi}^0_3$

*): Cascade decays.

+ invisible $\tilde{\chi}_1^0 \tilde{\chi}_1^0$, $\tilde{\nu}_{\tilde{e},\tilde{\mu}} \tilde{\nu}_{\tilde{e},\tilde{\mu}}$.

- The $\tilde{\tau}_1$ is the NLSP.
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.3 \text{ GeV}$, $E_{\tau,max} = 45.5 \text{ GeV}$: $\gamma \gamma background \Leftrightarrow pairs background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 52.4 \text{ GeV}$, $E_{\tau,max} = 150.0 \text{ GeV}$: $WW \rightarrow l\nu l\nu background \Leftrightarrow Polarisation$.
- For \tilde{e}_R or $\tilde{\mu}_R$: : $E_{l,min}=7.3~{\rm GeV}, E_{l,max}=99.2~{\rm GeV}$: Neither $\gamma\gamma$ nor $WW \to l\nu l\nu$ background severe.
- For pol=(1,-1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- $\tilde{\tau}$ NLSP $\to \tau$:s in most SUSY decays \to SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$ = several hundred fb and BR(X \rightarrow $\tilde{\tau}$) > 70 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$.

- The $\tilde{\tau}_1$ is the NLSP.
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.3 \text{ GeV}$, $E_{\tau,max} = 45.5 \text{ GeV}$: $\gamma \gamma background \Leftrightarrow pairs background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 52.4 \text{ GeV}$, $E_{\tau,max} = 150.0 \text{ GeV}$: $WW \rightarrow l\nu l\nu background \Leftrightarrow Polarisation$.
- For \tilde{e}_R or $\tilde{\mu}_R$: $:E_{l,min}=7.3~{\rm GeV}, E_{l,max}=99.2~{\rm GeV}$: Neither $\gamma\gamma$ nor $WW \to l\nu l\nu$ background severe.
- For pol=(1,-1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- $\tilde{\tau}$ NLSP $\to \tau$:s in most SUSY decays \to SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$ = several hundred fb and BR(X \rightarrow $\tilde{\tau}$) > 70 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$.

- The $\tilde{\tau}_1$ is the NLSP.
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.3 \text{ GeV}$, $E_{\tau,max} = 45.5 \text{ GeV}$: $\gamma \gamma background \Leftrightarrow pairs background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 52.4 \text{ GeV}$, $E_{\tau,max} = 150.0 \text{ GeV}$: $WW \rightarrow l\nu l\nu background \Leftrightarrow Polarisation$.
- For \tilde{e}_R or $\tilde{\mu}_R$: $:E_{l,min}=7.3~{\rm GeV}, E_{l,max}=99.2~{\rm GeV}$: Neither $\gamma\gamma$ nor $WW \to l\nu l\nu$ background severe.
- For pol=(1,-1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- $\tilde{\tau}$ NLSP $\to \tau$:s in most SUSY decays \to SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$ = several hundred fb and BR(X \rightarrow $\tilde{\tau}$) > 70 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$.

- The $\tilde{\tau}_1$ is the NLSP.
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.3 \text{ GeV}$, $E_{\tau,max} = 45.5 \text{ GeV}$: $\gamma \gamma background \Leftrightarrow pairs background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 52.4 \text{ GeV}$, $E_{\tau,max} = 150.0 \text{ GeV}$: $WW \rightarrow l\nu l\nu background \Leftrightarrow Polarisation$.
- For \tilde{e}_R or $\tilde{\mu}_R$: : $E_{l,min} = 7.3 \text{ GeV}$, $E_{l,max} = 99.2 \text{ GeV}$: Neither $\gamma \gamma$ nor $WW \rightarrow l \nu l \nu$ background severe.
- For pol=(1,-1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- $\tilde{\tau}$ NLSP $\to \tau$:s in most SUSY decays \to SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$ = several hundred fb and BR(X \rightarrow $\tilde{\tau}$) > 70 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$.

STC4 @ 500 GeV

Strategy:

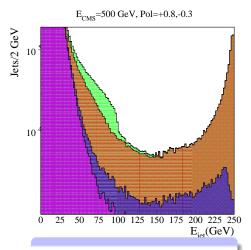
- \bullet Global preselection to reduce SM, while efficiency for all signals stays above \sim 90 %.
- The further select for all sleptons ($\tilde{e}_R, \tilde{e}_L, \tilde{\mu}_R, \tilde{\mu}_L, \tilde{\tau}_1$).
- Next step: specific selections for \tilde{e}_R and $\tilde{\mu}_R$, for \tilde{e}_L and $\tilde{\mu}_L$, and for $\tilde{\tau}_1$.
- Last step: add particle id to separate \tilde{e} and $\tilde{\mu}$, special cuts for $\tilde{\tau}_1$.
- Check results both for RL and LR beam-polarisation.

In the following, a mix of new results from STC4+SGV@DBD and SPS1a'+FullSim@LOI will be shown

STC4 @ 500 GeV

Strategy:

- \bullet Global preselection to reduce SM, while efficiency for all signals stays above \sim 90 %.
- The further select for all sleptons ($\tilde{e}_R, \tilde{e}_L, \tilde{\mu}_R, \tilde{\mu}_L, \tilde{\tau}_1$).
- Next step: specific selections for \tilde{e}_R and $\tilde{\mu}_R$, for \tilde{e}_L and $\tilde{\mu}_L$, and for $\tilde{\tau}_1$.
- Last step: add particle id to separate \tilde{e} and $\tilde{\mu}$, special cuts for $\tilde{\tau}_1$.
- Check results both for RL and LR beam-polarisation.


In the following, a mix of new results from STC4+SGV@DBD and SPS1a'+FullSim@LOI will be shown

STC4 global

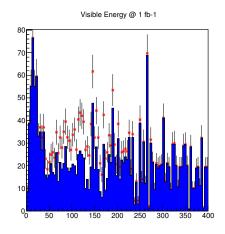
After a few very general cuts:

- Missing energy > 100
- Less than 10 charged tracks
- $|\cos\theta_{Ptot}| < 0.95$
- Exactly two τ -jets
- Visible mass < 300 GeV
- θ_{acop} between 0.15 and 3.1

Magenta: $\gamma\gamma$, Blue: 3f,

Red: Rest of SM, Green: SUSY.

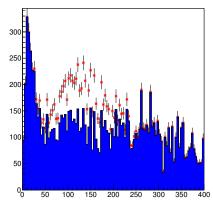
Early discovery channel:


crossection in the pb-range.

- Few simple cuts.
- Simple observable: E_{vis} : Peak and width gives $M_{\tilde{e}_R}$ and $M_{\tilde{\chi}_1^0}$.
- See the signal appearing after
 - 1 fb⁻¹
 - 5 fb⁻¹
 - 25 fb⁻¹
 - 100 fb⁻¹
 - 250 fb^{−1}

Early discovery channel:

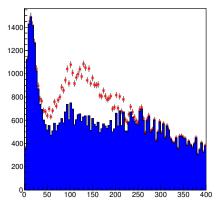
crossection in the pb-range.


- Few simple cuts.
- Simple observable: E_{vis}: Peak and width gives M_{ẽR} and M_{x̃1}.
- See the signal appearing after
 - 1 fb⁻¹
 - 5 fb⁻¹
 - 25 fb⁻¹
 - 100 fb⁻¹
 - 250 fb⁻¹

Early discovery channel: crossection in the pb-range.

- Few simple cuts.
- Simple observable: E_{vis}: Peak and width gives M_{ẽR} and M_{x̃1}.
- See the signal appearing after
 - 1 fb^{−1}
 - 5 fb⁻¹
 - 25 fb⁻¹
 - 100 fb⁻¹
 - 250 fb^{−1}

Visible Energy @ 5 fb-1



Early discovery channel:

crossection in the pb-range.

- Few simple cuts.
- Simple observable: E_{vis}: Peak and width gives M_{ẽR} and M_{x̃1}.
- See the signal appearing after
 - 1 fb^{−1}
 - 5 fb⁻¹
 - 25 fb⁻¹
 - 100 fb⁻¹
 - 250 fb^{−1}

Visible Energy @ 25 fb-1

Early discovery channel:

crossection in the pb-range.

- Few simple cuts.
- Simple observable: E_{vis}: Peak and width gives M_{ẽR} and M_{x̃1}.
- See the signal appearing after
 - 1 fb^{−1}
 - 5 fb⁻¹
 - 25 fb⁻¹
 - 100 fb⁻¹
 - 250 fb^{−1}

50 100 150 200

STC4 early discovery: \tilde{e}_R

Early discovery channel:

crossection in the pb-range.

- Few simple cuts.
- Simple observable: E_{vis}: Peak and width gives M_{ẽR} and M_{x̃1}.
- See the signal appearing after
 - 1 fb⁻¹
 - 5 fb⁻¹
 - 25 fb⁻¹
 - 100 fb⁻¹
 - 250 fb⁻¹

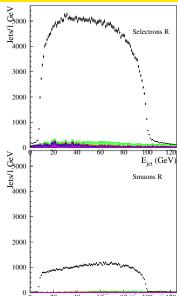
Visible Energy @ 250 fb-1 14000 12000 10000 8000 6000 4000 2000

300 350

STC4 sleptons @ 500 GeV: $\tilde{\mathbf{e}}, \tilde{\mu}$

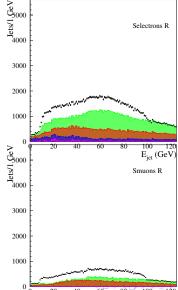
- Selections for $\tilde{\mu}$ and \tilde{e} :
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{jet}, beam-pol 80%,-30%...
- ... or beam-pol -80%,30%.
- Further selections for L (LR):
 - $Q_{jet} \cos \theta_{jet}$

STC4 sleptons @ 500 GeV: $\tilde{\mathbf{e}}, \tilde{\mu}$

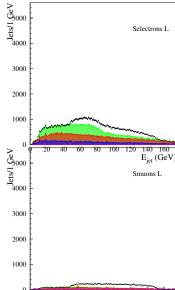

- Selections for $\tilde{\mu}$ and \tilde{e} :
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{iet}, beam-pol 80%,-30%...
- ... or beam-pol -80%,30%.
- Further selections for L (LR):
 - $q_{jet} \cos \theta_{jet}$ • $M_{vis} \neq M_Z$

STC4 sleptons @ 500 GeV: $\tilde{\mathbf{e}}, \tilde{\mu}$

- Selections for $\tilde{\mu}$ and $\tilde{\mathbf{e}}$:
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{jet}, beam-pol 80%,-30%...
- ... or beam-pol -80%,30%.
- Further selections for L (LR):

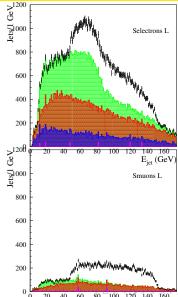

q_{jet} cos *q_{jet} M_{vis}* ≠ *M_z*

STC4 sleptons @ 500 GeV: $\tilde{\mathbf{e}}, \tilde{\mu}$


- Selections for $\tilde{\mu}$ and $\tilde{\mathbf{e}}$:
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{iet}, beam-pol 80%,-30%...
- ... or beam-pol -80%,30%.
- Further selections for L (LR):

• $Q_{jet} \cos \theta_{jet}$ • $M_{vis} \neq M_Z$

STC4 sleptons @ 500 GeV: \tilde{e} , $\tilde{\mu}$


- Selections for $\tilde{\mu}$ and \tilde{e} :
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{iet}, beam-pol 80%,-30%...
- ... or beam-pol -80%,30%.
- Further selections for L (LR):
 - $q_{iet} \cos \theta_{iet}$
 - $M_{vis} \neq M_{7}$

14 / 18

STC4 sleptons @ 500 GeV: $\tilde{\mathbf{e}}, \tilde{\mu}$

- Selections for $\tilde{\mu}$ and \tilde{e} :
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{jet}, beam-pol 80%,-30%...
- ... or beam-pol -80%,30%.
- Further selections for L (LR):
 - $q_{iet} \cos \theta_{iet}$
 - $M_{vis} \neq M_Z$

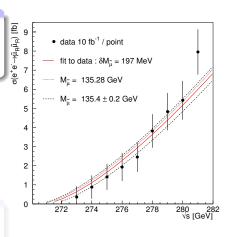
From these spectra, we can estimate $M_{\tilde{\rm e}_{\rm R}}$, $M_{\tilde{\mu}_{\rm R}}$ and $M_{\tilde{\chi}_1^0}$ to < 0.5 GeV.

From these spectra, we can estimate $M_{\tilde{\mathbf{e}}_{\mathbf{R}}}$, $M_{\tilde{\mu}_{\mathbf{R}}}$ and $M_{\tilde{\chi}_{1}^{0}}$ to < 0.5 GeV.

So: Next step is $M_{\widetilde{\mu}_R}$ from threshold:

- 10 points, 10 fb $^{-1}$ /point.
- Luminosity $\propto E_{CMS}$, so this is \Leftrightarrow 170 fb⁻¹ @ E_{CMS} =500 GeV.

Error on $M_{\widetilde{\mu}_R}$ = 197 MeV \Rightarrow more studies needed to see if the continuum can match this.

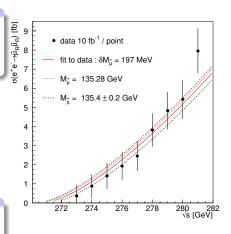


From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 0.5 GeV.

So: Next step is $M_{\tilde{\mu}_R}$ from threshold:

- 10 points, 10 fb $^{-1}$ /point.
- Luminosity $\propto E_{CMS}$, so this is \Leftrightarrow 170 fb⁻¹ @ E_{CMS} =500 GeV.

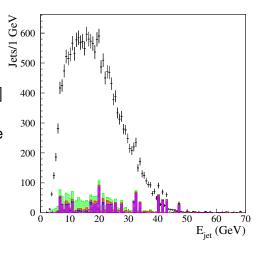
Error on $M_{\tilde{\mu}_R}$ = 197 MeV \Rightarrow more studies needed to see if the continuum can match this.



From these spectra, we can estimate $M_{{\rm \widetilde e_R}}$, $M_{{\rm \widetilde \mu_R}}$ and $M_{{\rm \widetilde \chi_1^0}}$ to < 0.5 GeV.

So: Next step is $M_{\tilde{\mu}_R}$ from threshold:

- 10 points, 10 fb⁻¹/point.
- Luminosity $\propto E_{CMS}$, so this is \Leftrightarrow 170 fb⁻¹ @ E_{CMS} =500 GeV.


Error on $M_{\widetilde{\mu}_R}$ = 197 MeV \Rightarrow more studies needed to see if the contimuum can match this.

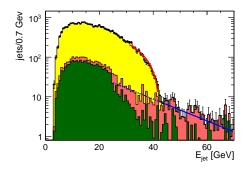
STC4 sleptons @ 500 GeV: $\tilde{\tau}_1$

Selections for $\tilde{\tau}_1$:

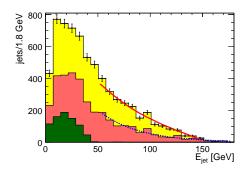
- Correct charge.
- P_T wrt. beam and one τ wrt the other.
- $M_{iet} < M_{\tau}$
- E_{vis} < 120 GeV, M_{vis} \in [20, 87] GeV.
- Cuts on polar angle and angle between leptons.
- Little energy below 30 deg, or not in τ -jet.
- At least one τ -jet should be hadronic.
- Anit- $\gamma\gamma$ likelihood.

Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - $\tilde{\tau}_2$: \sim no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background

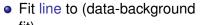


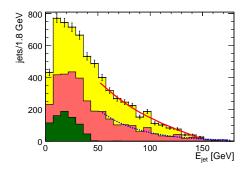
Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).


- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - $\tilde{\tau}_2$: \sim no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.

Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - $\tilde{\tau}_2$: \sim no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.


Fit line to (data-background)



Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - $\tilde{\tau}_2$: \sim no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.

Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY

Results for $\tilde{\tau}_1$

$$M_{\widetilde{ au}_1}=107.73^{+0.03}_{-0.05} {
m GeV}/c^2\oplus 1.3\Delta(M_{\widetilde{\chi}^0_1})$$
 The error from $M_{\widetilde{\chi}^0_1}$ largely dominates

Results for $\tilde{\tau}_2$

 $M_{\widetilde{\tau}_2}=183^{+11}_{-5}{
m GeV}/c^2\oplus 18\Delta(M_{\widetilde{\chi}^0_1})$ The error from the endpoint largely dominates

►ıı ıırıe ıo (aaıa-backgrouna

Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY

Results from cross-section for $\tilde{\tau}_1$

$$\Delta(N_{signal})/N_{signal} = 3.1\% \rightarrow \Delta(M_{\widetilde{\tau}_1}) = 3.2 {\rm GeV}/c^2$$

Results from cross-section for
$$\tilde{\tau}_2$$

$$\Delta(\textit{N}_{\textit{Signal}})/\textit{N}_{\textit{Signal}} = 4.2\%
ightarrow \Delta(\textit{M}_{\widetilde{\mathcal{T}}_{2}}) = 3.6 \text{GeV}/\textit{c}^{2}$$

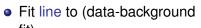
End-point + Cross-section
$$\rightarrow \Delta(M_{\tilde{\chi}_1^0}) = 1.7 \text{GeV}/c^2$$

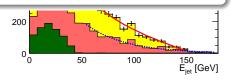
• Fit line to (data-background

200

Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY




Also: τ polarisation in $\tilde{\tau}_1$ decays

$$\Delta(\mathcal{P}_{\tau})/\mathcal{P}_{\tau} = 9$$
 %.

εχιιαμυιαιε.

• $\tilde{\tau}_2$: \sim no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.

- Study best method to analyse spectra, eq
 - edge detection in noisy spectra with methods borrowed from image processing (S. Caiazza thesis).
 - Optimal statistic for clean signals.
- Specific reconstruction methods for e, μ , and τ .
- Make a coherent SGV study of all channels, at all E_{CMS} stages.

Status:

- Study best method to analyse spectra, eq
 - edge detection in noisy spectra with methods borrowed from image processing (S. Caiazza thesis).
 - Optimal statistic for clean signals.
- Specific reconstruction methods for e, μ , and τ .
- Make a coherent SGV study of all channels, at all E_{CMS} stages.
- Status:

- Study best method to analyse spectra, eg
 - edge detection in noisy spectra with methods borrowed from image processing (S. Caiazza thesis).
 - Optimal statistic for clean signals.
- Specific reconstruction methods for e, μ , and τ .
- Make a coherent SGV study of all channels, at all E_{CMS} stages.
 - Also channels not studied in SPS1a'
 - Exploit more complex decay cascades.
- Status:

- Study best method to analyse spectra, eg
 - edge detection in noisy spectra with methods borrowed from image processing (S. Caiazza thesis).
 - Optimal statistic for clean signals.
- Specific reconstruction methods for e, μ , and τ .
- Make a coherent SGV study of all channels, at all E_{CMS} stages.
 - Also channels not studied in SPS1a'
 - Exploit more complex decay cascades.

Status:

- All signals generated.
- All Background exists at 500, but $\gamma\gamma$ is missing at 250 & 350.
- At 500, good selections are at hand for the sleptons. In particular, $\tilde{\tau}_1$ compares well with SPS1a' analysis.
- Need to further study the parameter extraction for L-sleptons (SUSY background).
- Need the same for bosinos.

Thank You!

BACKUP SLIDES

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if $E_{beam} >> M_X$, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold!
- Note that there are two decays in each event: two measurements per event.

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if $E_{beam} >> M_X$, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold!
- Note that there are two decays in each event: two measurements per event.

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if $E_{beam} >> M_X$, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold!
- Note that there are two decays in each event: two measurements per event.

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if $E_{beam} >> M_X$, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold!
- Note that there are two decays in each event: two measurements per event.
- Also note that there are not enough measurements to make a constrained fit, even assuming that the two SUSY particles in the two decays are the same: (2 × 4 unknown components of 4-momentum (=8)) (total E and p conservation (=4) + 2

Observables: Pair-production, two-body decay

However:

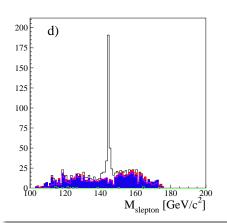
- If the masses are known from other measurements, there are enough constraints.
- Then the events can be completely reconstructed ...
- ... and the angular distributions both in production and decay can be measured.
- From this the spins can be determined, which is essential to determine that what we are seeing is SUSY.

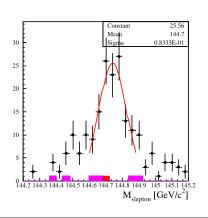
- Order-of-magnitude better mass resolution, - বিচ বছৈ বছৈ ছাই ৩৭৫

Observables: Pair-production, two-body decay

However:

- If the masses are known from other measurements, there are enough constraints.
- Then the events can be completely reconstructed ...
- ... and the angular distributions both in production and decay can be measured.
- From this the spins can be determined, which is essential to determine that what we are seeing is SUSY.


Furthermore:


- Looking at more complicated decays, such as cascade decays, there are enough constraints if some (but not all) masses are known.
- Allows to reconstruct eg. the slepton mass in $\tilde{\chi}_2^0 \to \tilde{\ell}\ell \to \ell\ell\tilde{\chi}_1^0$ if chargino and LSP masses are known.
- Order-of-magnitude better mass resolution.

Observables: Pair-production, two-body decay

However:

• If the masses are known from other measurements, there are

Orugi-orinaginituug better mass resolution.

- The cross-section in $e^+e^- \to XX$ close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β , in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle \to properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In $\tilde{\tau} \to \tau \tilde{\chi}_1^0 \to X \nu_{\tau} \tilde{\chi}_1^0$.

- The cross-section in $e^+e^- \to XX$ close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β , in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle \to properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In $\tilde{\tau} \to \tau \tilde{\chi}_1^0 \to X \nu_{\tau} \tilde{\chi}_1^0$.

- The cross-section in $e^+e^- \rightarrow XX$ close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β , in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle \to properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In $\tilde{\tau} \to \tau \tilde{\chi}^0_1 \to X \nu_{\tau} \tilde{\chi}^0_1$.

- The cross-section in $e^+e^- \to XX$ close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β , in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle \to properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In $\tilde{\tau} \to \tau \tilde{\chi}_1^0 \to X \nu_{\tau} \tilde{\chi}_1^0$.

Extracting the $\tilde{\tau}$ properties

See Phys.Rev.D82:055016,2010

Use polarisation (0.8,-0.22) to reduce bosino background.

From decay kinematics:

- $M_{\tilde{\tau}}$ from $M_{\tilde{\chi}_{1}^{0}}$ and end-point of spectrum = $E_{\tau,max}$.
- Other end-point hidden in $\gamma\gamma$ background:Must get $M_{\tilde{\chi}^0_1}$ from other sources. $(\tilde{\mu}$, $\tilde{\epsilon}$, ...)

From cross-section:

- $\sigma_{\widetilde{\tau}} = A(\theta_{\widetilde{\tau}}, \mathcal{P}_{beam}) \times \beta^3/s$, so
- $M_{\widetilde{\tau}} = E_{beam} \sqrt{1 (\sigma s/A)^{2/3}}$: no $M_{\widetilde{\chi}_1^0}$!

From decay spectra:

• $\mathcal{P}_{ au}$ from exclusive decay-mode(s): handle on mixing angles $\theta_{\widetilde{ au}}$ and $\theta_{\widetilde{\chi}_1^0}$

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

$\tilde{\ell}$ properties:

- Only two particles (possibly τ:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts.

Select this by

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = \pm 1,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- E_{vis} significantly less than E_{CMS} .
- M_{miss} significantly less than M_{CMS}.
- No particle with momentum close to E_{beam}.

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

$\tilde{\ell}$ properties:

- Only two particles (possibly τ:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

+ anti $\gamma\gamma$ cuts.

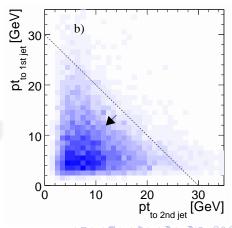
Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = \pm 1,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- E_{vis} significantly less than E_{CMS} .
- M_{miss} significantly less than M_{CMS}.
- No particle with momentum close to E_{beam}.

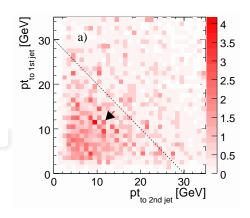
Topology selection

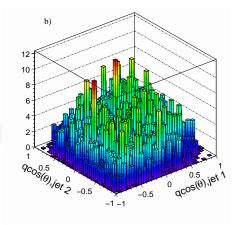
Take over SPS1a' $\tilde{\tau}$ analysis principle

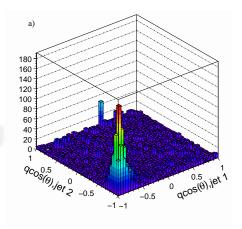
$\tilde{\ell}$ properties:

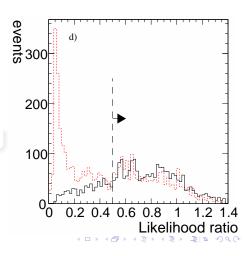

- Only two particles (possibly τ:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts.

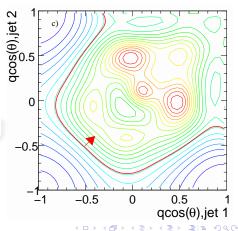
Select this by:


- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = \pm 1,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- E_{vis} significantly less than E_{CMS} .
- M_{miss} significantly less than M_{CMS}.
- No particle with momentum close to E_{beam}.


- \bullet $\tilde{\tau}_1$:
 - $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.
- τ̄₂:
 - Other side jet not e or μ
 - Most energetic jet not e or μ
 - Cut on Signal-SM LR of $f(q_{jet1} \cos \theta_{jet1}, q_{jet2} \cos \theta_{jet2})$


- \bullet $\tilde{\tau}_1$:
 - $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.
- τ̄₂:
 - Other side jet not e or μ
 - Most energetic jet not e or μ
 - Cut on Signal-SM LR of $f(q_{jet1} \cos \theta_{jet1}, q_{jet2} \cos \theta_{jet2})$

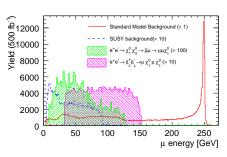

- \bullet $\tilde{\tau}_1$:
 - $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.
- τ̄₂:
 - Other side jet not e or μ
 - Most energetic jet not e or μ
 - Cut on Signal-SM LR of $f(q_{jet1} \cos \theta_{jet1}, q_{jet2} \cos \theta_{jet2})$


- \bullet $\tilde{\tau}_1$:
 - $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.
- \bullet $\tilde{\tau}_2$:
 - Other side jet not e or μ
 - Most energetic jet not e or μ
 - Cut on Signal-SM LR of $f(q_{jet1} \cos \theta_{jet1}, q_{jet2} \cos \theta_{jet2})$

- \bullet $\tilde{\tau}_1$:
 - $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.
- \bullet $\tilde{\tau}_2$:
 - Other side jet not e or μ
 - Most energetic jet not e or μ
 - Cut on Signal-SM LR of $f(q_{jet1} \cos \theta_{jet1}, q_{jet2} \cos \theta_{jet2})$

- \bullet $\tilde{\tau}_1$:
 - $(E_{iet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.
- \bullet $\tilde{\tau}_2$:
 - Other side jet not e or μ
 - Most energetic jet not e or μ
 - Cut on Signal-SM LR of $f(q_{iet1} \cos \theta_{iet1}, q_{iet2} \cos \theta_{iet2})$

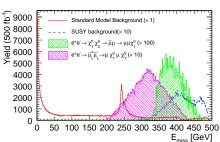
Backup


$\tilde{\tau}_1$ and $\tilde{\tau}_2$ further selections

- \bullet $ilde{ au}_1$:
 - $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.
- τ̄₂:
 - Other side jet not e or μ
 - Most energetic jet not ${\it e}$ or μ
 - Cut on Signal-SM LR of $f(q_{jet1} \cos \theta_{jet1}, q_{jet2} \cos \theta_{jet2})$

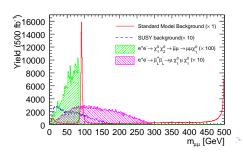
$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).


- $\bullet \ \tilde{\mu}_{L}\tilde{\mu}_{L} \to \mu\mu\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \mu \tilde{\mu}_R \tilde{\chi}_1^0 \to \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$
- Momentum of μ :s
- E_{miss}
- \bullet $M_{\mu\mu}$

$\tilde{\mu}$ channels

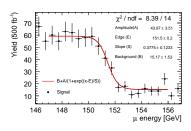
Use "normal" polarisation (-0.8,0.22).

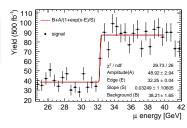

- $\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L} \rightarrow \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0$
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \mu \tilde{\mu}_R \tilde{\chi}_1^0 \rightarrow \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$
- Momentum of μ:s
- E_{miss}
- Μ_{μμ}

$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).

- $\bullet \ \tilde{\mu}_L \tilde{\mu}_L \to \mu \mu \tilde{\chi}^0_1 \tilde{\chi}^0_1$
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \mu \tilde{\mu}_R \tilde{\chi}_1^0 \rightarrow \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$
- Momentum of μ :s
- E_{miss}
- ullet $M_{\mu\mu}$



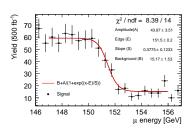

$\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L}$

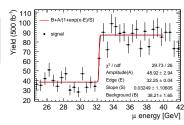
Selections

- $\bullet \ \theta_{\textit{missingp}} \in [0.1\pi; 0.9\pi]$
- $\bullet \ E_{miss} \in [200, 430] \text{GeV}$
- $M_{\mu\mu} \notin [80.100] \text{GeV}$ and > 30 GeV/c^2

$$\Delta(M_{\widetilde{\chi}_1^0}) = 920 \mathrm{MeV}/c^2$$

 $\Delta(M_{\widetilde{\mu}_\mathrm{L}}) = 100 \mathrm{MeV}/c^2$



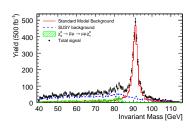

$\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L}$

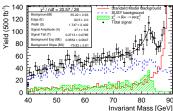
Selections

- $\bullet \ \theta_{\textit{missingp}} \in [0.1\pi; 0.9\pi]$
- $E_{miss} \in [200, 430] \text{GeV}$
- $M_{\mu\mu} \notin [80.100] \text{GeV}$ and > 30 GeV/c^2

$$\Delta(M_{\widetilde{\chi}_1^0}) = 920 \mathrm{MeV}/c^2$$

 $\Delta(M_{\widetilde{\mu}_\mathrm{L}}) = 100 \mathrm{MeV}/c^2$

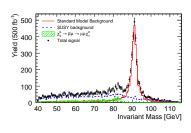


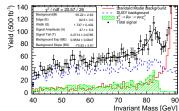


Selections

- $\theta_{missingp} \in [0.2\pi; 0.8\pi]$
- $p_{Tmiss} > 40 \text{GeV}/c$
- β of μ system > 0.6.
- $E_{miss} \in [355, 395] \text{GeV}$

$$\Delta(M_{\tilde{\chi}^0_2}) = 1.38 \mathrm{GeV}/c^2$$





Selections

- $\theta_{missingp} \in [0.2\pi; 0.8\pi]$
- $p_{Tmiss} > 40 \text{GeV}/c$
- β of μ system > 0.6.
- $E_{miss} \in [355, 395] \text{GeV}$

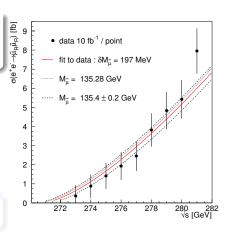
$$\Delta(\textit{M}_{\tilde{\chi}^0_2}) = 1.38 {
m GeV}/\textit{c}^2$$

From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 1 GeV.

From these spectra, we can estimate $M_{\widetilde{e}_R}$, $M_{\widetilde{\mu}_R}$ and $M_{\widetilde{\chi}_1^0}$ to < 1 GeV.

So: Next step is $M_{\widetilde{\mu}_R}$ from threshold:

- 10 points, 10 fb $^{-1}$ /point.
- Luminousity $\propto E_{CMS}$, so this is \Leftrightarrow 170 fb⁻¹ @ E_{CMS} =500 GeV.

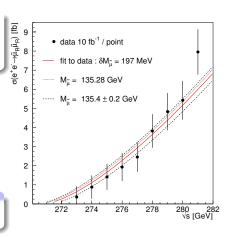

Error on $M_{\tilde{\mu}_R} = 197 \text{ MeV}$

From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 1 GeV.

So: Next step is $M_{\tilde{\mu}_R}$ from threshold:

- 10 points, 10 fb⁻¹/point.
- Luminousity $\propto E_{CMS}$, so this is \Leftrightarrow 170 fb⁻¹ @ E_{CMS} =500 GeV.

Error on $M_{\tilde{\mu}_{\rm R}}$ = 197 MeV



From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 1 GeV.

So: Next step is $M_{\tilde{\mu}_R}$ from threshold:

- 10 points, 10 fb⁻¹/point.
- Luminousity $\propto E_{CMS}$, so this is \Leftrightarrow 170 fb⁻¹ @ E_{CMS} =500 GeV.

Error on $M_{\widetilde{\mu}_{\rm R}}$ = 197 MeV

