Higgs Self-Coupling Measurement at the ILC.

Claude-Fabienne Dürig 1 , Jenny List 1 , Junping Tian 2 , Keisuke Fujii 2

 1 DESY Hamburg, Germany 2 KEK, Japan

Helmholtz-Alliance Linear Collider Forum University of Bonn 29-30 April 2014

- Higgs properties can be measured precisely at ILC (m_H, Γ^{tot}_H, etc.)
 - missing: **Higgs potential**, which represents test of EWSB and mass generation
- to probe shape of Higgs potential we need to determine the
 Higgs self-coupling

http://www.quantumdiaries.org

Double Higgs production processes

fundamental difficulties:

- > irreducible SM diagrams: significantly degrade the coupling sensitivity
- \blacktriangleright production cross-sections are small \longrightarrow high luminosities needed
- > low-p_T $\gamma\gamma \rightarrow$ hadrons background (analysis with and without overlay)
- > BR(H \rightarrow bb) drop to higher Higgs masses
- very large SM background

Irreducible diagrams and sensitivity of self-coupling

irreducible diagrams with same final state, but do not concern self-coupling

Ζ

e

example for ZHH:

cross-section $\sigma({\sf ZHH})$ as a function of λ

$$\sigma(\lambda) = a\lambda^2 + b\lambda + c$$

- a: Higgs self-coupling diagram
- b: interference between diagrams
- c: irreducible diagrams

precision of Higgs self-coupling for m_H = 125 GeV

Higgs-strahlung:

$$\frac{\Delta\lambda}{\lambda} = 1.64 \cdot \frac{\Delta\sigma}{\sigma}$$

WW-fusion:

$$\frac{\Delta\lambda}{\lambda} = 0.85 \cdot \frac{\Delta\sigma}{\sigma}$$

w/o interference the factor would be 0.5

Analysis strategy - Decay Channels

before discovery (finished analysis) after discovery (ongoing analysis)

H •----`*H 7.**

assuming P (e^+e^-) = (0.3,-0.8) at \mathcal{L} = 2 ab $^{-1}$

$e^+e^- \rightarrow ZHH \rightarrow I^-I^+HH$

$e^+e^- \to ZHH \to \nu \bar{\nu} HH$

$e^+e^- \rightarrow ZHH \rightarrow q\bar{q}HH$

6 jets mode (70% \times 60% \times 60% \approx 25%)

 $Z \longrightarrow q\bar{q} \quad H \longrightarrow b\bar{b} \quad H \longrightarrow b\bar{b}$

From $m_H = 120 \text{ GeV}$ to $m_H = 125 \text{ GeV}$

> smaller cross-section σ_{ZHH} to higher Higgs masses

$e^+e^- \rightarrow \text{ZHH}$	cross-section [fb]	expected no. of events
$m_{\rm H}=120~{\rm GeV}$	0.23	460
$m_{H}=125\;\text{GeV}$	0.20	396

assuming $\mathsf{P}(e^+e^-)$ = (0.3,-0.8) at \mathcal{L} = 2 ab^{-1}

> decreasing branching ratio $BR(H \rightarrow b\bar{b})$

Results for 120 GeV, extrapolation to 125 GeV

measurement at $\sqrt{s} = 500$ GeV, $\mathcal{L} = 2$ ab⁻¹ and P(e^+e^-) = (0.3,-0.8) investigated Higgs mass m_H= 120 GeV (finished) and m_H= 125 GeV (ongoing)

> results for m_{H} = 120 GeV without $\gamma\gamma$ -overlay [Junping Tian, LC-REP-2013-003]

cross-section:
$$\frac{\delta \sigma_{ZHH}}{\sigma_{ZHH}} = 27\%$$

Higgs self-coupling: $\frac{\delta\lambda}{\lambda} = 44\%$

> result extrapolated to $m_H = 125 \text{ GeV}$

				Scenario A: HH \rightarrow bbbb			
	500 Ge	V at \mathcal{L} =	$= 2 \text{ ab}^{-1}$	Scenario B: adding HH \rightarrow bbWW [*] , expect 20%			
scenario	А	В	С	improvement			
$m_{H}=120\;\text{GeV}$	44%	35%	28%	Scenario C: analysis improvement (jet-clustering,			
$m_{\rm H}=125\;\text{GeV}$	53%	42%	34%	kinematic fit, etc.), expect 20%			
				improvement			

Using ZHH (H \to bb) at \sqrt{s} =500 GeV we would expect a precision of 53% on the Higgs self-coupling for $m_H=125~GeV$

Analysis strategy $e^+e^- \rightarrow ZHH$ at $\sqrt{s} = 500~GeV$

Perform analysis for $m_H = 125 \text{ GeV}$ without and with overlay and investigate the differences

NEW low $p_T \gamma \gamma \rightarrow$ hadrons background

- > virtual photons which got radiated off the primary beam electrons
- > real photons due to bremsstrahlung and synchrotron radiation

event selection:

- isolated lepton selection or rejection
- 2) $\gamma\gamma$ -overlay removal
- **3** cluster particles into jets and get flavor tag information
- 4 pair jets to form signal bosons
- 6 each dominant background is suppressed by training a separate neural net

strategic difficulties:

- > flavor tagging and isolated lepton selection: need very high efficiency and purity
- Higgs mass reconstruction: mis-clustering, wrong jet-pairing
- > neural net training: train separate neural nets, large statistics needed

Isolated lepton selection

old lepton selection - isolation requirement: cut based on energy distributions in calorimeter new lepton selection - isolation requirement: neural net based (MVA)

Example of input variable: energyratio

define cone around direction of rec. particle and sum up energy of particles inside this cone
 energyratio is E/(E + Econe)

isolated lepton has small Econe, so energyratio close to one

ð		s.	lignal '						· · · · ·	-1
ž.	30		lackgro	ound						-
(N/I)	25									-
	20	Ē								1400
	15	Ē						L		00/164
	10	Ē								0.000
	5	Ē	A					J.		flow (5, B
	0	<u>Б. н.</u>	V/m					<u>د ار ا</u>		- 8
		-0.2	0	0.2	0.4	0.6	0.8	1	1.2	1.4
								MLF	[,] respo	nse

neural net output for electrons

efficiency (%)	eehh	μµhh	bbbb	evbbqq	$\mu \nu b b q q$
new selection	87.0	89.1	0.0017	0.315	0.020
old selection	85.7	88.4	0.028	1.44	0.10

New lepton selection strategy increases signal efficiency. Suppression of hadronic and one-lepton backgrounds is significantly improved.

Removal of low-p_T $\gamma\gamma ightarrow$ hadrons background

low- $p_T \gamma \gamma \rightarrow$ hadrons overlaid events per interaction:

 $< N_{\gamma\gamma} >= 1.7$

(ILD/SiD standard, but overestimated)

apply FastJetClustering: k_TExclusiveNJets which R-value?

- ▶ for R ≥ 1.2 almost no increase in signal efficiency but in overlay
- > best recovery of bare evts R = 1.3
- use only reconstructed particles in the clustered jets for analysis

after isolated lepton selection or rejection cluster remaining particles into jets
 clustering algorithm: Durham algorithm

- mis-clustering of particles degrades Higgs mass resolution
- ongoing work: new jet-clustering algorithm
- \blacktriangleright perfect jet-clustering can improve coupling precision by pprox 10% or more

Jet-pairing

 \blacktriangleright combine the jets by choosing combination with smallest χ^2

 \succ Higgs mass resolution important for neural net training (input variables)

- \succ jet-pairing (pprox 70% correct pairing)
- additionally: investigate kinematic fitting

Preliminary results for 125 GeV without overlay

modes	signal	background	significance		
			excess	measurement	
$ZHH \rightarrow I^{-}I^{+}HH$	3.0	4.3	1.16σ	0.91σ	
	3.3	6.0	1.12σ	0.91σ	
${\sf ZHH} \to \nu \bar{\nu} {\sf HH}$	5.4	7.0	1.72σ	1.45σ	
m ZHH ightarrow q ar q HH	9.1	21.3	1.78σ 1.61σ		
	9.0	34.7	1.41σ	1.30σ	

We achieve a combined signal significance of $s\sigma = 3.8\sigma$

Claude Fabienne Dürig | Higgs self-coupling at ILC | Helmholtz-Alliance Linear Collider Forum, University of Bonn, 29-30 April 2014 | 14/18

Preliminary results of analysis for 125 GeV

 \blacktriangleright results extrapolated to m_H= 125 GeV give a precision of 53% on the Higgs self-coupling

preliminary results for m_H = 125 GeV

cross-section:
$$\frac{\delta \sigma_{ZHH}}{\sigma_{ZHH}} = 32\%$$

	500 GeV at $\mathcal{L}=2$ ab $^{-1}$					
scenario	А	В	С			
extrapolated	53%	42%	34%			
full analysis	52%	41%	33%			

Extrapolation works, slightly conservative

Higgs self-coupling: $\frac{\delta\lambda}{\lambda} = 52\%$

We achieve a precision of 52% on the Higgs self-coupling for $m_H=125\;\text{GeV}$

Effect of $\gamma\gamma$ -overlay ?

Preliminary results for $m_H = 125 \text{ GeV}$ with overlay

preliminary results for $m_{\text{H}}{=}$ 125 GeV without overlay:

modes	signal	background	significance		
			excess	measurement	
$ZHH \rightarrow I^{-}I^{+}HH$	3.0	4.3	1.16σ	0.91σ	
	3.3	6.0	1.12σ	0.91σ	
${\sf ZHH} \to \nu \bar{\nu} {\sf HH}$	5.4	7.0	1.72σ	1.45σ	
m ZHH ightarrow q ar q HH	9.1	21.3	1.78σ	1.61σ	
	9.0	34.7	1.41σ	1.30σ	

We achieve a combined signal significance of $s\sigma=3.8\sigma$

preliminary results for $m_{\text{H}}{=}~125~\text{GeV}$ with overlay:

modes	signal	background	significance		
			excess	measurement	
$ZHH \rightarrow I^-I^+HH$	2.4	4.0	0.94σ	0.72σ	
	3.2	7.0	1.01σ	0.83σ	
${\sf ZHH} \to \nu \bar{\nu} {\sf HH}$	3.8	4.0	1.53σ	1.22σ	
m ZHH ightarrow q ar q HH	8.3	22.3	1.59σ	1.44σ	
	8.7	39.3	1.29σ	1.19σ	

Considering overlay, we achieve a combined signal significance of $s\sigma=2.9\sigma$

Preliminary results of analysis for 125 GeV

 \blacktriangleright results without overlay for m_H= 125 GeV give a precision of 52% on the Higgs self-coupling

> preliminary results for $m_H = 125$ GeV with overlay

cross-section:
$$\frac{\delta \sigma_{ZHH}}{\sigma_{ZHH}} = 36.2\%$$

	500 GeV at $\mathcal{L}=2$ ab $^{-1}$				
scenario	А	В	С		
without overlay	52%	41%	33%		
with overlay	59%	48%	38%		

$1 \; {\sf TeV}$ at ${\cal L}=2.5 \; {\sf ab}^{-1}$					
А	В	С			
16%	13%	10%			

results w/o overlay for 125 GeV arXiv:1310.0763v3[hep-ph]

Higgs self-coupling:
$$\frac{\delta\lambda}{\lambda} = 59.4\%$$

Considering $\gamma\gamma$ -overlay, we achieve a precision of 59% on the Higgs self-coupling

After 10 years of running ILC we can achieve a precision of 10% on the Higgs self-coupling (w/o overlay)

Summary and Outlook

Ongoing work

- key algorithms: b-tagging, lepton selection, jet-finding, jet-clustering
- investigate kinematic fitting
- ➤ analysis with H→WW* mode
- optimise analysis strategy (current selections are optimised for ZHH, not for the self-coupling diagram)

Conclusion

- measuring Higgs self-coupling is fundamental task for next generation LC
- direct determination of Higgs potential through double Higgs production
- measurement of Higgs self-coupling challenging
- > considering $\gamma\gamma-$ overlay
- > preliminary results for $m_H = 125$ GeV gives precision of 59.4% at $\sqrt{s} = 500$ GeV
- starting points for improvement
- > long term perspective: at 1 TeV achieve precision of < 10%

BACKUP SLIDES

Claude Fabienne Dürig | Higgs self-coupling at ILC | Helmholtz-Alliance Linear Collider Forum, University of Bonn, 29-30 April 2014 | 19/18

Staged running programme (Higgs part)

$250 \text{ fb}^{-1} (ILC_{250})/1150 \text{ fb}^{-1}(ILC_{LumUp})$ at 250 GeV

- ▶ Higgs mass, spin, CP
- absolute HZZ coupling
- total width (initial)
- > BR(H \rightarrow bb,cc, $\gamma\gamma$, $\tau\tau$,WW^{*},ZZ^{*}, $\gamma\gamma$, γ Z)

$500 \text{ fb}^{-1} (ILC_{500})/1600 \text{ fb}^{-1}(ILC_{LumUp})$ at 500 GeV

- WW-fusion fully activated, absolute HWW coupling
- \blacktriangleright total Higgs width ightarrow absolute normalisation of other couplings
- > Top-Yukawa coupling through $tt\gamma$
- Higgs self-coupling through ZHH
- BRs with high statistics

$1000 \; fb^{-1}(\mathsf{ILC}_{1000})/2500 \; fb^{-1}(\mathsf{ILC}_{\mathsf{LumUp}})$ at 1 TeV

- accumulate much more Higgs events
- > $H \rightarrow \mu \mu$ accessible
- improve Top-Yukawa coupling
- > Higgs self-coupling through $\nu\nu$ HH

Cross-section and self-coupling determination

Cross-section measurement via parameter estimation through minimum likelihood method
 Define likelihood:

$$L_{s+b} = \prod_{i} \frac{e^{-(s_i+b_i)}}{n_i!} (s_i+b_i)^{n_i}$$
$$L_b = \prod_{i} \frac{1}{n_i!} e^{-b_i} b_i^{n_i}$$

▶ Only s_i (i = search mode) is related to σ_{ZHH} : $s_i = \sigma_{ZHH} \cdot \mathcal{L} \cdot BR_i \cdot \epsilon_i$

Excess and measurement significance

excess significance: assuming there is no signal, the probability of observing events equal or more than the expected number of events $(N_S + N_B)$

$$p=\int\limits_{N_S+N_B}^{\infty}f(x;N_B)dx$$
 in case of large statistics: $\frac{N_S}{\sqrt{N_B}}$

measurement significance: assuming signal exists, the probability of observing events equal or less than the expected number of background events (N_B)

$$p=\int\limits_{-\infty}^{N_B}f(x;N_S+N_B)dx$$
 n case of large statistics: $\frac{N_S}{\sqrt{N_S+N_B}}$

convert to gaussion significance (s):

i

$$1 - p = \int_{-\infty}^{s\sigma} N(x; 0, 1) dx$$

Claude Fabienne Dürig | Higgs self-coupling at ILC | Helmholtz-Alliance Linear Collider Forum, University of Bonn, 29-30 April 2014 | 22/18

Higgs self-coupling programme at ILC

full simulation finished with $m_H=120\mbox{ GeV},$ extrapolated to $m_H=125\mbox{ GeV}$

ILC 500 GeV: 500 fb⁻¹ 1000 GeV: 1000 fb⁻¹ LumiUp 500 GeV: 1600 fb⁻¹ 1000 GeV: 2500 fb⁻¹

	5	00 GeV		500 GeV and 1 TeV		
scenario	А	В	С	А	В	С
ILC	104%	83%	66%	26%	21%	17%
ILC LumUp	58%	46%	37%	16%	13%	10%

Scenario A: $HH \rightarrow bbbb$

Scenario B: by adding HH \rightarrow bbWW^{*} (full simulation ongoing) expect 20% relative improvement Scenario C: future improvement (jet-clustering), expect 20% relative improvement (conservative)

LHC results on the self-coupling measurement arXiv:1308.6302v2[hep-ph] by Weiming Yao

- > process used: HH \rightarrow bb $\gamma\gamma$
- > investigated energies: $\sqrt{s} = 14$ TeV, $\sqrt{s} = 33$ TeV, $\sqrt{s} = 100$ TeV
- > integrated luminosity: $\mathcal{L} = 3 \text{ ab}^{-1}$

energy	$\sqrt{s}=14\;TeV$	$\sqrt{s}=33~TeV$	$\sqrt{s}=100~TeV$
precision	50%	20%	8%

- > high luminosity running at $\sqrt{s} = 14$ TeV, possible to observe signal with statistical significance of 2.3 σ with $\mathcal{L} = 3$ ab⁻¹ of data
- > at $\sqrt{s} = 33$ TeV, expect to observe signal with statistical significance of 6.2σ with $\mathcal{L} = 3$ ab⁻¹
- > at $\sqrt{s} = 100 \text{ TeV}$, expect to observe signal with statistical significance of 15.0σ with $\mathcal{L} = 3 \text{ ab}^{-1}$

Durham clustering algorithm

- Durham algorithm clusters the 2 objects i and j with the smallest mutual angle θ_{ij} and energy min(E²_i, E²_j).
- > algorithm work iterative: beginning with a list of jets that are all just particles
- > between every particle pair (i,j) the relative distance y_{ij} is determined from
 - the energies E_i, E_j of the particles
 - and their mutual angle θ_{ij}

by:

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{E_{vis}^2}$$

two particles with smallest relative distance value y_{ij} are combined to a new object with four-momentum:

In figure object 3 and 4 are clustered to a new object 3^* .

The International Linear Collider

