Model-independent WIMP searches at ILC	

Searches for Dark Matter particles at the International Linear Collider (ILC)

Andrii Chaus

DESY CEA Saclay

29.04.2014

Result

Conclusion

Outline

Introduction

WIMP searches: Direct and Indirect detection, Colliders

Model-independent WIMP searches at ILC

Cosmological Approach Effective Operator Approach Analysis strategy

Results

Cosmological Approach Effective Operator Approach Comparison to CMS

Conclusion

Outline

Result

Conclusion

Introduction

WIMP searches: Direct and Indirect detection, Colliders

Introduction ••• Model-independent WIMP searches at ILC

Results

Conclusion

WHY Dark Matter ?

- Nature/Interactions with visible matter unknown
- One of the strongest hints for "particle" new physics
- Strong motivation for weak up to few TeV scale DM
- Testable at colliders

Model-independent WIMP searches at ILC

Result

Conclusion

Possibility to reach WIMPs

Direct detection

 Elastic scattering of primordial WIMPs on nucleons in a large detector (e.g. LXe). No sensitivity to WIMP-lepton coupling

Indirect detection

- WIMPs annihilation in galaxy, observe decay products registered by the big telescopes. Sensitivity to WIMP coupling to leptons, limited mass range Colliders
 - > Produce WIMPs or supersymmetry particles at pp or e^+e^- colliders

Results

WIMPs at Colliders

Two basic ways to produce WIMPs at colliders:

In cascade decay of supersymmetric or exotic particle

 Production in decay can dominate but is model-dependent (new particle in addition to WIMP!)

Direct production

 Direct production is less model-dependent, and is not yet strongly constrained. Will be my focus in this talk

Model-independent WIMP searches at ILC

Results

Conclusion

Outline

Model-independent WIMP searches at ILC

Cosmological Approach Effective Operator Approach Analysis strategy

Model-independent WIMP searches at ILC

Results

Conclusion

Model-independent WIMP searches at ILC: the idea

How? χ is after all invisible ?!

Trick! Demand an ISR γ in the detector and nothing else.

Signal:

- > WIMP pair production with ISR: $e^+e^- \rightarrow \chi \bar{\chi} \gamma$
- > Backgrounds :
 - > Irreducible $e^+e^- \rightarrow \nu \bar{\nu}(N)\gamma$
 - Reducible :

radiative Bhabha scattering e⁺e⁻ → e⁺e⁻γ
e⁺e⁻ → γ(N)γ , N=0,1,2

Results

Conclusion

Event Generation and Reconstruction

Monte Carlo:

- ▶ ILD 00 SM DSTs at 500 GeV
- > signal: reweighting of $\nu\nu\gamma$ process

Event reconstruction:

- Particle Flow: Pandora algorithm
- > Require at least one photon with $E_{\gamma} > 10 \text{ GeV}$ $|cos(\Theta)| < 0.997$
- ≻ no tracks

Systematic errors:

- Luminosity measurement
- Polarization measurement
- Beam spectrum
- Photon selection

Photon energy distribution of the selected signal-like events of the SM background after all cuts

Model-independent WIMP searches at ILC

Results

Systematic errors

 \succ Luminosity measurement $\delta \mathcal{L}/\mathcal{L} = 0.11$ % (arXiv:1304.4082)

>
$$\delta P_{e^-}/P_{e^-} = 0.25$$
 % and $\delta P_{e^+}/P_{e^+} = 0.25$ % (TDR)

- Beam spectrum: The relative deviation between the SB-2009 and RDR beam parameter sets in the photon energy region from 10 to 100 GeV.
- > Photon selection $\delta \varepsilon / \varepsilon = 0.43\%$ from normalization to radiative Z-return.

Model-independent WIMP searches at ILC

Results

Sum of all background

Conclusion

Signal and Background

Signal and background

Cosmological Approach

In models where the relic density Ω_{dm} depends on rate for $\chi\chi \to SM$ -particles, crossing-symmetry tells us what $e^+e^- \to \chi\chi$ is.

Signal cross section:

$$\frac{d\sigma}{dx \, d\cos\Theta} \approx \frac{\alpha \kappa_e^{pol} \sigma_{\rm an}}{16\pi} \frac{1 + (1 - x)^2}{x \sin\Theta^2} 2^{2J_0} (2S_{\chi} + 1)^2 \left(1 - \frac{4M_{\chi}^2}{(1 - x)s}\right)^{1/2 + J_0}$$

where κ_e^{pol} is polarization dependent annihilation fraction to $e^+e^ \sigma_{an}$ -from cosmological observation. There is $x = \frac{2E_{\gamma}}{\sqrt{s}}$ and E_{γ} is the photon energy and center-of-mass energy \sqrt{s} correspondingly.

$$\begin{split} \kappa_{e}^{pol} &= \frac{1}{4} (1 + P_{e^{-}}) [(1 + P_{e^{+}}) \kappa(e_{-}^{R} e_{+}^{L}) + (1 - P_{e^{+}}) \kappa(e_{-}^{R} e_{+}^{R})] \\ &+ \frac{1}{4} (1 - P_{e^{-}}) [(1 + P_{e^{+}}) \kappa(e_{-}^{L} e_{+}^{L}) + (1 - P_{e^{+}}) \kappa(e_{-}^{L} e_{+}^{R})] \end{split}$$

Andrii Chaus | 29.04.2014 | 12/23

Model-independent WIMP searches at ILC

Results

Conclusion

Effective Operator Approach

Coupling of WIMP to electron and positron :

$$\begin{array}{ll} \mathcal{O}_{V} = (\overline{\chi}\gamma_{\mu}\chi)(\overline{l}\gamma^{\mu}l), & (vector) \\ \mathcal{O}_{S} = (\overline{\chi}\chi)(\overline{l}l), & (scalar, s-channel) \\ \mathcal{O}_{A} = (\overline{\chi}\gamma_{\mu}\gamma_{5}\chi)(\overline{l}\gamma^{\mu}\gamma^{5}l), & (axial-vector) \end{array}$$

Double differential cross section for Vector operator :

$$\begin{split} \sigma_{LR} &= \sigma_{RL} :\\ \frac{d\sigma}{dx \, d\cos\Theta} &= \frac{\alpha}{12\pi^2} \frac{s}{\Lambda^4} \frac{(1-x+2\mu^2)}{x \sin^2\Theta} \sqrt{\frac{1-x-4\mu^2}{1-x}} (4(1-x) + x^2(1+\cos^2\Theta)) \\ \Lambda \text{ is energy scale that provides the coupling and } x &= \frac{2E_{\gamma}}{\sqrt{s}}, \ \mu &= \frac{M_{\chi}}{\sqrt{s}} \\ \sigma_{RR} &= \sigma_{LL} = 0 \\ \text{For Axial-vector and Scalar s-channel operators :} \\ \sigma_{RR} &= \sigma_{LL} \neq 0 \\ \sigma_{LR} &= \sigma_{RL} = 0 \end{split}$$

Results

Parameters Overview

Cosmology approach

Free parameters:

- > S_{χ} WIMP spin
- > k_e Fraction of WIMP pair annihilation into e^+e^- , $\sigma \sim \kappa_e^{pol}$
- J Angular momentum of dominant partial wave

Effective operator approach

Free parameters:

- \succ M_{χ} WIMP mass
- > S_{χ} WIMP spin = $-\frac{1}{2}$
- > Λ energy scale of the new physics that provides the coupling, $\sigma \sim \frac{1}{\Lambda^4}$

Choice of operator

Analysis strategy

The aim of this studies:

Calculate sensitivity of the ILC to WIMP searches.

 \Longrightarrow The modified frequentist approach was chosen as a method for this studies.

Modified Frequentist Approach

 $\mathit{CL}_{\mathit{S}}\equiv \mathit{CL}_{\mathit{S}+\mathit{B}}/\mathit{CL}_{\mathit{B}}$, where

- > CL_B will be integral of probability distribution function for Background from $-\infty$ to D
- ➤ CL_{S+B} will be integral of probability distribution function for (Signal+Background) from -∞ to D

Results

Shape information

Cea

Model-independent WIMP searches at ILC

Results

Conclusion

Outline

Results

Cosmological Approach Effective Operator Approach Comparison to CMS

Model-independent WIMP searches at ILC

Results

Conclusion

Sensitivity for 3σ Observation in Cosmological Approach

Model-independent WIMP searches at ILC

Result

Conclusion

Polarization dependence in Cosmological Approach

Polarization gains nearly order of magnitude

Using polarized beams, we can increase sensitivity. Here presented helicity configuration optimal for Vector operator

Andrii Chaus | 29.04.2014 | 20/23

Model-independent WIMP searches at ILC

Results

Conclusion

Comparison of ILC limits with CMS

ILC can place limit on Λ up to $\sim 2.7~\text{TeV}$

Outline

Model-independent WIMP searches at ILC

Result

Conclusion

Conclusion

Conclusion

 Model-independent WIMP searches at the ILC are complementary to LHC, direct and indirect detection .

> Presented results for different theoretical approaches:

- Cosmological Approach: Annihilation fraction(k_e) of few percent is enough to observe WIMPs
- > Effective Operator Approach: 3σ Observation up to $\Lambda \sim 2.5$ TeV.
- > Polarisation is important to reduce $\nu \bar{\nu} \gamma$ background and can to distinguish models.

BACKUP

Comparison with previous studies:

 3σ observation, $\mathcal{L} = 500 \ fb^{-1}$, $P(e^+e^-) = (0.0;0.0)$ From JHEP 1305 (2013) 138, in this caclulation only $\nu\bar{\nu}\gamma$ are used

Results are within \sim 100 GeV. Reason: different background cross-section. We allow additional ISR $\nu \bar{\nu}(N)\gamma$, where N=1,2,3

Comparison with previous studies:

 3σ observation, $\mathcal{L} = 250 \ fb^{-1}$, $P(e^+e^-) = (0.8;-0.5)$ From JHEP 1305 (2013) 138

Agrees well for polarized beams.

Improvement of beam polarization

> Electron polarization improves limit on Λ by \sim 200 GeV.

 Positron polarization improves limit on Λ by another ~ 200-300 GeV, depending on operator.

Implementation of systematic errors decreases the limit on A by $\sim 100~GeV$

