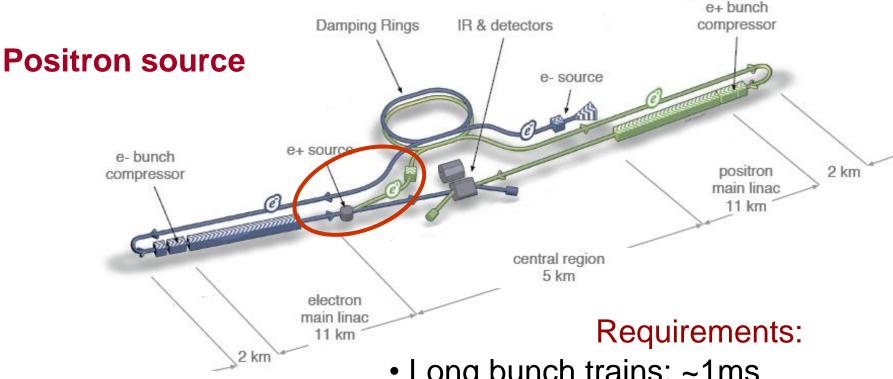


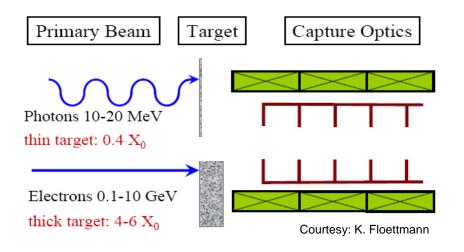
Status ILC Positron Source

Helmholtz-Alliance Linear Collider Forum
29-30 April 2014
University of Bonn
Sabine Riemann (DESY) for the ILC e+ Group


ilc

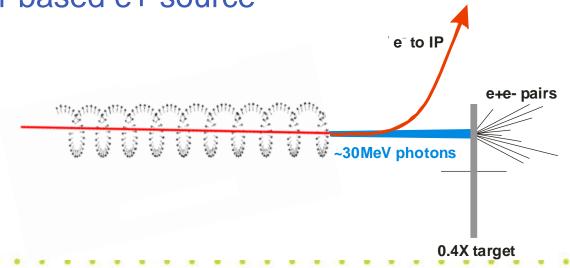
Outline

- ILC positron source
 - Requirements
 - e+ production
 - Undulator based source
 - Undulator parameters
 - Target
 - Positron capture
 - Source parameters
 - Polarization upgrade
 - ILC e+ source @ $E_{cm} = 250 GeV$
- Alternative: conventional source
- Summary


ILC e+ source

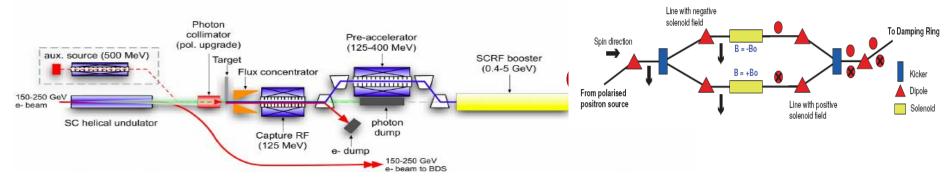
- Long bunch trains: ~1ms
 1312 (2625) bunches per train, rep rate 5Hz
 2×10¹⁰ particles/bunch
- Small emittance
- Beam polarization

Production of Positrons


Undulator,
Compton backscatt. (far future)
Large heat load @ target

"Conventional"
Huge heat load @ target

ILC baseline: undulator based e+ source


Helical undulator

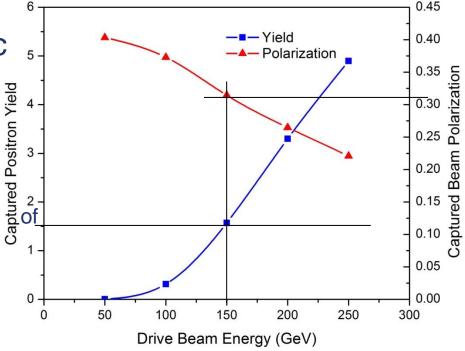
- \rightarrow Circularly pol. γ
- → Long. polarized e+

ILC Positron Source

- Undulator
 - Superconducting
 - helical → positron beam is polarized
 - K=0.92, λ =1.15cm, (B=0.86T on the axis)
 - aperture 5.85mm
 - Max 231m active length (needed if photon-Collimator to increase e+ pol)
- e+ Production Target
 - 400m downstream the undulator
 - 0.4 X0 Ti alloy
- Positron Capture: Pulsed flux concentrator + capture RF
- Normal-conducting pre-acceleration up to 400MeV
- e+ polarization
 - ~30% (≤60% with photon collimator and longer undulator)
 - Polarization sign is determined by undulator winding (direction of the helical field)
 → Spin Flipper (2 parallel lines to rotate in opposite direction)
 - Spin manipulation see also talk by Valentyn

ILC Undulator Parameters

Undulator at end of main linac

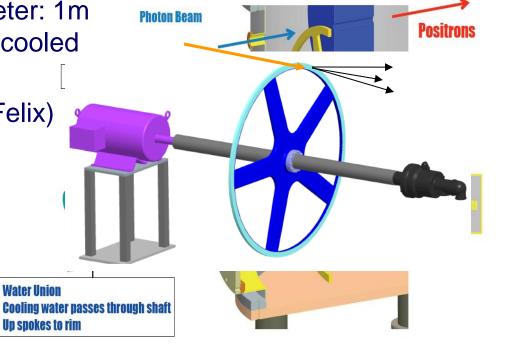

→ source parameters depend on e- energy

e+ yield and polarization:

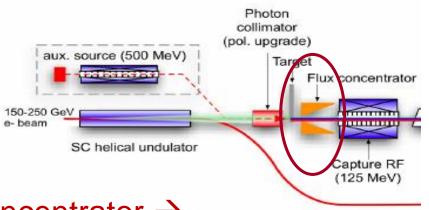
(Quarter wave transformer instead flux concentrator)

L_u=147m, no photon collimation

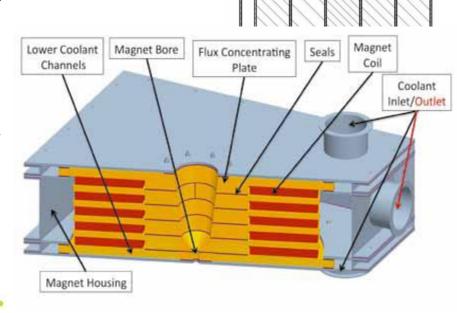
→ P ≈ 30%


Undulator windings: NbTi

Parameter	Value
Period (mm)	11.5
K	0.92
Field on Axis (T)	0.86
Beam aperture (mm)	5.85
First Harmonic Energy (MeV)	10.1
Nominal Drive Beam Energy(GeV)	150


Positron Target

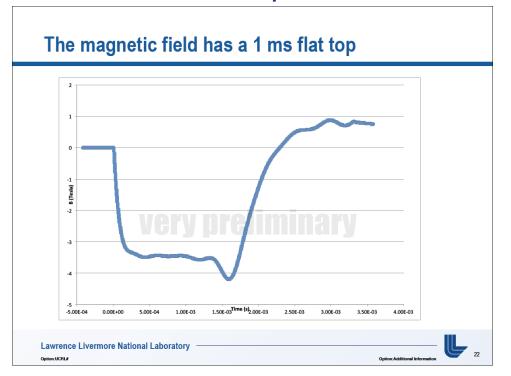
- Titanium alloy Ti-6%Al-4%V, thickness 0.4 X₀ (1.4 cm)
- Small photon spot size on target (~1.2 1.7 mm rms) → high peak energy deposition density
- Average power deposition in target: 5-7% (< ~4kW)
- → spinning wheel to avoid target damage
 - 2000 r.p.m. (100m/s), diameter: 1m
 - Wheel is in vacuum, water-cooled
- Potential problems
 - Stress waves (see talk by Felix)
 - Rotating vacuum seals:
 - Under test at LLNL using Ferromagnetic seal
 - Still unsatisfactory
 - Outgassing spikes still being observed
 - → More work is needed


Pulsed Flux Concentrator

J. Gronberg, LLNL

Pulsed flux concentrator → capture efficiency of ~25%

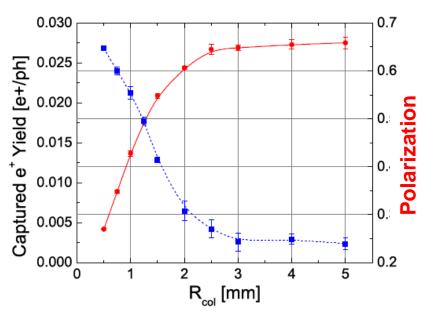
- Quarter wave transformer ~ 15%
- low field on target → low eddy currents
- high peak field (3.2T),1ms flat top
- Magnetic field goes adiabatically down to 0.5T at capture RF
- Prototyping and testing at LLNL



Flux concentrator

Full field with 1ms flat top has been demonstrated

- FC seems workable but still need to demonstrate full average power operation
 - Run with 5Hz over extended period and full average power with cooling



Polarization upgrade

Collimation of γ beam \rightarrow Higher polarization

Lower yield must be compensated By longer undulator

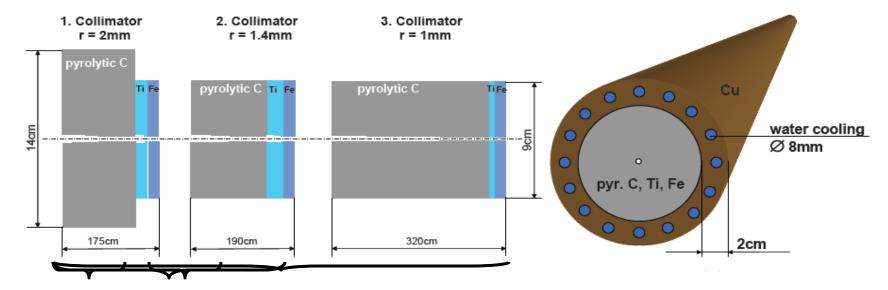
Yield and Polarization vs Aperture Radius of Photon Collimator

Ushakov

Photon beam collimation

ILC TDF

						<u> </u>
Parameter	Unit					L upgrade
Centre-of-mass energy	GeV	200-250	350	500	500	500
Drive-electron-beam energy	${\rm GeV}$	150	175	250	250	250
Undulator K value				0.92		
Undulator period	cm			1.15		
Positron polarisation	%	55	59	50	59	50
Collimator-iris radius	mm	2.0	1.4	1.0	0.7	1.0
Active undulator length	m	231	196	70	144	70
Photon beam power	kW	98.5	113.8	83	173	166
Power absorbed in collimator	kW	48.1	68.7	43.4	121	86.8
Power absorbed in collimator	%	48.8	60.4	52.3	70.1	52.3


350GeV: 60% e+ polarization ⇔ ~60% of photon beam power absorbed in collimator

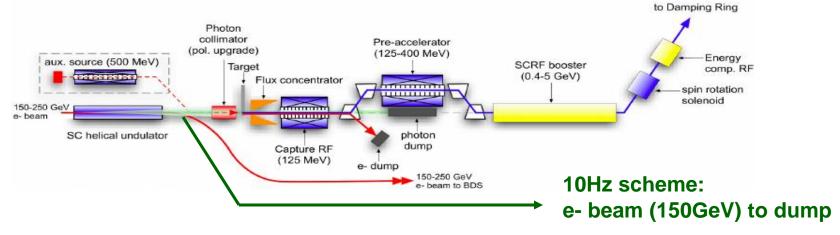
500GeV: 60% e+ polarization ⇔ collimator absorbs ~70% of photon beam power → 50% e+ polarization 'sufficient'?

Photon collimator

- Collimator parameters depend on energy
 - → Multistage collimator (3 stages with each pyr. graphite, Ti, Fe)

$$E_{e-} = 150 \text{ GeV} = 175 \text{ GeV} = 175 \text{ GeV}$$
 $P_{e+} = 50\% P_{e+} \approx 60 P_{e+} \approx 50\%$

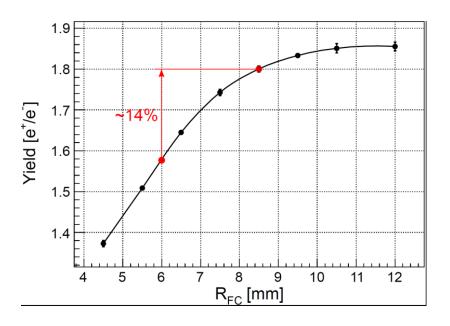
- Potential problem: damage due to long-term irradiation
 - Max values for displacement per atom (dpa) ~ 0.5 at inner collimator surface
 - → volume change (swelling); consequences are under consideration

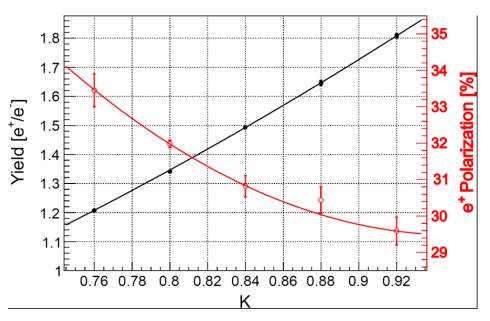

$$E_{cm} = 250 \text{ GeV}$$

Higgs-Boson measurements

ILC as Higgs factory

- $E_{cm} = 250 \text{ GeV} \iff E_{e} = 125 \text{GeV}$
 - For E_e < 150 GeV yield is below 1.5 e+/e-
- → TDR: 10 Hz scheme
 - 1. Alternating with e- beam for physics additional e- beam with E_e =150GeV passes undulator generate γ for e+ production


2. Use almost full length of undulator + increased aperture of flux concentrator + optimized system → no 10Hz scheme needed to get 1.5 e+/e-



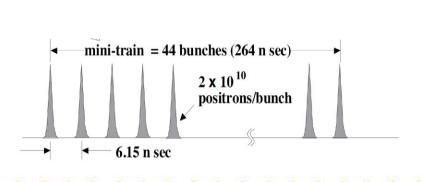
Positron source at Ecm = 250 GeV

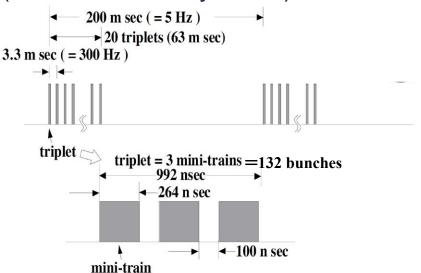
optimzed e+ source parameters to avoid 10Hz scheme

see A. Ushakov et al., LC-REP-2013-019)

Alternative source scheme

Alternative source: "300 Hz scheme"

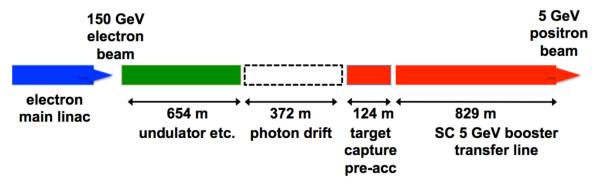

6GeV e- beam, 4 X0 tungsten target

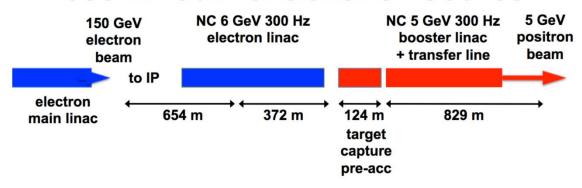

T. Omori

- Time stretched generation of e+ bunch train:
 - 63ms instead of 1ms
 - → lower peak load on target
 - **2640 bunches** per train; $2640 = 20 \times 132$
 - Bunch train ⇔ 20 triplets = 20 × 3 Mini-Trains

triplet

- Triplets are generated with 300Hz
- With beam size σ = 4mm, the peak energy deposition density is below 30J/g (limit from SLC target)
- Dynamic stress under study (see next talk by Felix)





LCWS 2013, talk by T. Omori: start with conventional scheme does not prevent upgrade wit

300 Hz conventional e+ source

ilc

Summary

- Undulator Scheme
 - Polarized source
 - Spinning target (2000rpm)
 - Flux concentrator development at LLNL
 - Photon collimator for higher polarization
 - Spin manipulation (fast reversal)
 - e+e- collisions at 250GeV possible with Y=1.5 e+/e-
- Conventional (300Hz) Scheme
 - Unpolarized source
 - Moving target (≥~ 5m/s) needed
 - Flux concentrator
 - Overall simulation
 - Confirm the positron yield
 - Including capture, bunch compression, beamloading & energy compression
- Choice of undulator/conventional should not affect tunnel
- R&D work is ongoing

Backup

Undulator Parameters

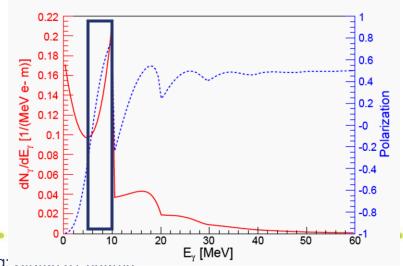
Photon energy (cut-off first harmonic) and undulator K value

$$E_1 \cong 23.7 MeV \frac{\left(E_e/50 GeV\right)^2}{\left(\lambda_u/1 mm\right) \left(1+K^2\right)} \qquad K \cong 0.0934 \frac{B_0}{1T} \cdot \frac{\lambda_u}{1 mm}$$

$$K \cong 0.0934 \frac{B_0}{1T} \cdot \frac{\lambda_u}{1mm}$$

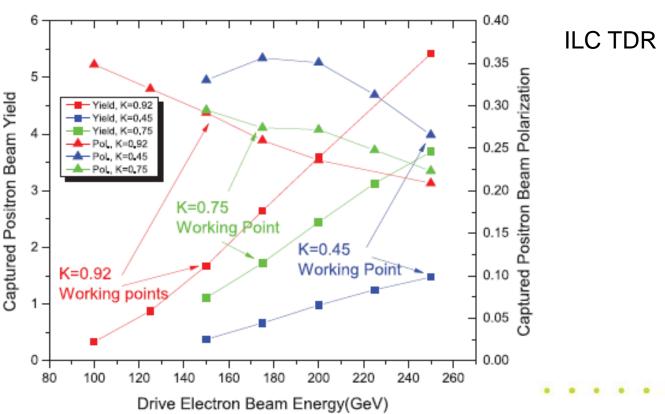
 $\lambda_u = \text{undulator period}$

- Number of photons
 - Increase intensity of γ beam by longer undulator


$$\frac{dN_{ph}}{dL} \cong \frac{30.6}{\lambda_{u}/1mm} K^{2} \ photons / m / e^{-}$$
 \Leftrightarrow Y = 1.5 e+/e- @ DR

$$\Leftrightarrow$$
 Y = 1.5 e+/e- @ DF

Upper half of energy spectrum is emitted in cone


$$\theta = \frac{\sqrt{1 + K^2}}{\gamma}$$

- Photon spectrum
 - \rightarrow Higher polarization with γ collimation

- e+ source is located at end of the linac → polarization and yield are strongly coupled to the electron beam energy!
- Optimum undulator parameters (K, undulator length) depend on E_e
- With higher energies smaller beam photon beam spot size on target
 → high polarization is difficult to achieve for high energies (heat load on target and photon collimator)

4/29/2014S. Riemann = 22

e- Beam Parameters	Ecm (GeV)						
for e+ generation	200	230	250	350	500	500 L upgrade	1000
e+ per bunch at IP (×10 ¹⁰)		2		2	2	2	1.74
Number of bunches per pulse			1312			2625	2450
Undulator period (cm)			1.15			1.15	4.3
Nominal 5Hz mode							4Hz
Undulator strength (K value)				0.92	0.75	0.45	1
Beam energy (GeV)				178	253	253	503
Undulator length (m)				14	.7	147	132
10Hz alternate pulse mode							
Undulator strength (K value)		0.92					
Beam energy for e+ prod.(GeV)		150					
Undulator length (m)		147					
Beam energy for lumi (GeV)	101	117	127				
e- beam bunch separation (ns)			554			366	366
Power absorbed in e+ target (%)		7		7	5.2	5	4.4
Spot size on target (mm rms)		1.4		1.2	0.8	0.8	
Peak power density in target (J/g)		51.7		65.6	67.5	101.3	105.4
Polarization (no collimator) (%)		31		30	29	29	19
4/29/2014S. Riemann		_				-	

e- Beam Parameters for e+ generation	Ecm (GeV)							
	240	350	500	500 L upgrade	1000			
e+ per bunch at IP (×10 ¹⁰)	2	2	2	2	1.74			
Number of bunches per pulse	1312 26				2450			
Undulator period (cm)	1.15			1.15	4.3			
Nominal 5Hz mode					4Hz			
Undulator strength (K value)	0.84	0.92	0.75	0.45	1			
Beam energy (GeV)	120	178	253	253	503			
Undulator length (m)	192 147			147	132			
10Hz alternate pulse mode								
e- beam bunch separation (ns)	554			366	366			
Power absorbed in e+ target (%)	9.2	7	5.2	5	4.4			
Spot size on target (mm rms)		1.2	0.8	0.8				
Peak power density in target (J/g)	44	65.6	67.5	101.3	105.4			
Polarization (no collimator) (%)	31	30	29	29	19			