SPIN TRACKING IN THE ILC DAMPING RING

Valentyn Kovalenko

Linear Collider Forum of the Helmholtz Alliance 29.04.2014

- Why do we need DR?
> Model of Polarization
- Theoretical model of spin dynamics
- Spin precession
- Spin motion in the curvilinear coordinate system
- Suitable coordinate frame for spin motion
- Equation of spin-orbit motion
- Synchrotron radiation and radiation damping
- Sokolov-Ternov effect
- Beam Sizes Simulation
- Spin-Orbit Resonances
- Spin Dynamics
- Summary

DAMPING RING

- The positron source produces trains of bunches with large emittances.
- The beam is stored for the time between machine pulses which is $1 / 10 \mathrm{~Hz}=$ $0.1 \mathrm{sec}=100 \mathrm{~ms}$
- Number of turns in DR: $\mathrm{N}=0.1 \cdot \mathrm{fc}=0.1 \cdot 3 \mathrm{e} 8 / 3200=9256$

	Injected emittance	Extracted emittance
Horizontal e^{+}	$1 \mu \mathrm{~m}$	0.8 nm
Vertical e^{+}	$1 \mu \mathrm{~m}$	0.002 nm
Longitudinal e^{+}	$>30 \mu \mathrm{~m}$	$10 \mu \mathrm{~m}$

-Luminosity: $L \sim 1 /\left(\sigma_{x} \cdot \sigma_{y}\right)$

DEFINITION OF POLARIZATION

Average of normalized expectation values - polarization:

$$
\vec{P}=\frac{1}{|\langle\vec{S}\rangle|} \frac{\sum_{i=1}^{1=N}\left\langle\vec{S}_{i}\right\rangle}{N}
$$

Spin of fermions is a statistical mixture of two basic pure states: spins up and spins down

$$
P=\frac{N_{+}-N_{-}}{N_{+}+N_{-}}
$$

SPIN PRECESSION

Spin precession in EM guide fields \rightarrow T-BMT equation:

$$
\begin{aligned}
& \frac{d \vec{S}}{d t}=\vec{\Omega}(r, p, t) \times \vec{S}, \\
& \vec{\Omega}=-\frac{q}{m \gamma}\left[(1+a \gamma) \vec{B}-\frac{a \vec{p} \cdot \vec{B}}{(1+\gamma) m^{2} c^{2}} \vec{p}-\frac{1}{m c^{2}}\left(a+\frac{1}{1+\gamma}\right) \vec{p} \times \overrightarrow{\mathcal{E}}\right]
\end{aligned}
$$

$a=(g-2) / 2$ is the anomalous gyromagnetic factor (for electron,positron

$$
=0.00115965212)
$$

SPIN PRECESSION

In a purely magnetic field there is some similarities between T-BMT and Lorentz force equation

$$
\begin{aligned}
& \frac{d \vec{p}}{d t}=-\frac{e}{\gamma m} \vec{B}_{\perp} \times \vec{p} \\
& \frac{d \vec{S}}{d t}=-\frac{e}{\gamma m}\left((1+a \gamma) \vec{B}_{\perp}+(1+a) \vec{B}_{\|}\right) \times \vec{S}
\end{aligned}
$$

- $\vec{B}_{\|}=0$ (no solenoids) $\rightarrow \quad \delta \theta_{\text {spin }}=(1+a \gamma) \delta \theta_{\text {orbit }}$
- if the orbit is deflected by an angle φ in a transverse magnetic field, then the spin is rotated by an angle ayp relative to the orbit.
- in the coordinate system that rotates with the particle's momentum: $\frac{d \vec{S}}{d t}=-\frac{q}{m} a \vec{B}_{\perp} \times \vec{S} \rightarrow$ for particle with velocity $v \int B d l=2 \pi \frac{m c v}{q a} \approx 9.24 \mathrm{Tm}$ results on spin rotation angle of 2π

SPIN MOTION IN THE CURVILENEAR COORDINATE SYSTEM

In DR the EM fields produced by the elements which are fixed in the space, \longrightarrow instead of time (t) the distance around the ring (s) can be used.

After transformation to curvilinear coordinates, the T-BMT equation becomes

$$
\begin{array}{ll}
\frac{d \vec{S}}{d s}=\vec{\Omega}(\vec{u}, s) \times \vec{S} & \begin{array}{l}
\text { Contribution due to } \\
\text { synchro-betatron motion }
\end{array} \\
\vec{\Omega}(\vec{u}, s)=\vec{\Omega}^{\text {c.o }}+\vec{\omega}^{s . b} &
\end{array}
$$

Contains fields along periodic closed orbit

SPIN MOTION IN THE CURVILENEAR COORDINATE SYSTEM

In DR with circumference C all fields are 2π periodic.
\rightarrow convenient to use the azimuth $\Theta=2 \pi / C$ as an independent variable
T-BMT equation becomes $\frac{d \vec{S}}{d \theta}=\vec{\Omega}(\vec{u}, \theta) \times \vec{S}, \vec{\Omega}(\vec{u}, \theta+2 \pi)=\vec{\Omega}(\vec{u}, \theta)$
Equation of particle motion $\frac{d \vec{u}}{d \theta}=\vec{v}(\vec{u}, \theta), \vec{v}(\vec{u}, \theta+2 \pi)=\vec{v}(\vec{u}, \theta)$
By introducing anti-symmetric matrix

$$
\begin{array}{r}
\boldsymbol{\Omega}=\left(\begin{array}{ccc}
0 & -\Omega_{s} & \Omega_{z} \\
\Omega_{s} & 0 & -\Omega_{x} \\
-\Omega_{z} & \Omega_{x} & 0
\end{array}\right) \xrightarrow{d \theta}=\boldsymbol{\Omega}(\vec{u}, \theta) \vec{S} \\
\theta_{0} \longrightarrow \theta_{1} \\
\vec{u}\left(\theta_{1}\right)=M_{6 x 6}\left(\theta_{1}, \theta_{0}\right) \vec{u}\left(\theta_{0}\right) \quad \vec{S}\left(\theta_{1}\right)=\mathbf{R}_{3 x 3}\left(\theta_{1}, \theta_{0}\right) \vec{S}\left(\theta_{0}\right) \\
\frac{d \mathbf{R}_{3 x 3}\left(\theta_{1}, \theta_{0}\right)}{d \theta}=\boldsymbol{\Omega} \mathbf{R}_{3 x 3}\left(\theta_{1}, \theta_{0}\right), \quad \mathbf{R}_{3 x 3}\left(\theta_{0}, \theta_{0}\right)=\mathbf{I}
\end{array}
$$

COORDINATE FRAME FOR SPIN MOTION

Suitable coordinate frame is necessary for description of spin motion.
Solving eigenvalue problem for the one turn rotation matrix $\mathbf{R}_{j \bullet 3}^{c . o}$

$$
R^{T}=R^{-1} \Rightarrow R^{T} R=I
$$

The eigenvalues of an orthogonal matrix $1, e^{2 \pi i v_{0}}, e^{-2 \pi i v_{0}}$
There is always at least one real eigenvector $\hat{n}_{0}\left(s_{0}\right)$:

$$
\hat{n}_{0}\left(s_{0}+C\right)=R\left(s_{0}+C, s_{0}\right) \hat{n}_{0}\left(s_{0}\right)=\hat{n}_{0}\left(s_{0}\right)
$$

The other two eigenvectors are complex and conjugate pairs $\hat{m}_{0} \pm i \hat{l}_{0}$ for $e^{ \pm 2 \pi i v_{0}}$ Right-handed coordinate system: $\hat{n}_{0}(s)=\hat{m}_{0}(s) \times \hat{I}_{0}(s)$

$$
l_{0} \perp \hat{n}_{0}, \hat{m}_{0} \perp \hat{n}_{0}, \hat{l}_{0} \perp \hat{m}_{0}
$$

$$
\hat{m}_{0}(\theta+2 \pi)+i \hat{l}_{0}(\theta+2 \pi)=e^{i 2 \pi \nu_{0}}\left[\hat{m}_{0}(\theta)+i \hat{l}_{0}(\theta)\right]-\text { not periodic. }
$$

By applying a further rotation by an angle $\psi_{\text {spin }} \quad \psi_{\text {spin }}(\theta+2 \pi)=\psi_{\text {spin }}(\theta)+2 \pi \nu_{0}$
\rightarrow periodic coordinate system $\hat{m}(\theta)+i \hat{l}(\theta)=e^{-i \psi_{s p i n}(\theta)}\left[\hat{m}_{0}(\theta)+i \hat{l}_{0}(\theta)\right]$

EQUATION OF SPIN-ORBIT MOTION

General solution of T-BMT

$$
\vec{S}=\sqrt{1-\alpha^{2}-\beta^{2}} \vec{n}_{0}(\theta)+\alpha \hat{m}(\theta)+\beta \hat{l}(\theta)
$$

The relative reduction of polarization

$$
\frac{d P}{d t} \approx \frac{1}{2} \frac{d}{d t}\left\langle\alpha^{2}+\beta^{2}\right\rangle=\frac{1}{2} \frac{d}{d t}\left(\sigma_{\alpha}^{2}+\sigma_{\beta}^{2}\right)
$$

Equation of spin-orbital motion

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
\sigma \\
\delta \\
\alpha \\
\beta
\end{array}\right)\left(s_{1}\right)=\left[\begin{array}{cc}
M_{6 \times 6} & 0_{6 \times 2} \\
G_{2 \times 6} & D_{2 \times 2}
\end{array}\right]\left(s_{1}, s_{0}\right)\left(\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
\sigma \\
\delta \\
\alpha \\
\beta
\end{array}\right)\left(s_{0}\right)
$$

SYNCHROTRON RADIATION AND RADIATION DAMPING

Particles lose longitudinal and transverse momentum in bending magnets.

In an RF cavity, the particle sees an accelerating electric field parallel to the closed orbit: the RF cavities in a damping ring restore the energy lost by synchrotron radiation.

SOKOLOV-TERNOV EFFECT

Relativistic particles emit synchrotron radiation and small fraction of radiated photons can cause spin flip from up to down and vice versa.
Flip rates for electrons:

$$
W_{\uparrow \downarrow}=\frac{5 \sqrt{3}}{16} \frac{e^{2} \gamma^{5} \hbar}{m_{e}^{2} c^{2}|\rho|^{3}}\left(1+\frac{8}{5 \sqrt{3}}\right) \quad W_{\downarrow \uparrow}=\frac{5 \sqrt{3}}{16} \frac{e^{2} \gamma^{5} \hbar}{m_{e}^{2} c^{2}|\rho|^{3}}\left(1-\frac{8}{5 \sqrt{3}}\right)
$$

Initially unpolarized stored -/+ beam gradually becomes polarized following:

$$
P(t)=P_{S T}\left(1-\exp \left(-t / \tau_{0}\right)\right)
$$

Maximum attainable (equilibrium) polarization: $\quad P_{S T}=\frac{W_{\uparrow \downarrow}-W_{\downarrow \uparrow}}{W_{\uparrow \downarrow}+W_{\downarrow \uparrow}}=\frac{8}{5 \sqrt{3}} \simeq 0.9238$ And build-up rate is $\tau_{0}^{-1}=\frac{5 \sqrt{3}}{8} \frac{r_{e} \gamma^{5} \hbar}{m_{e}|\rho|^{3}}$

For ILC DR ~ 2000 sec .

COMPUTER SIMULATION

> SLICKTRACK (by D.P. Barber): linearized orbit and non-linear spin motion.
> It allows to estimate level of depolarization including synchrotron radiation in the DR using full 3-D spin motion.
> The orbit damping effects are included as the damping terms in the transport matrices.
> The effects of stochastic photon emission are modeled by means of «big photon» emission in the middle of each dipole.

BEAM SIZES SIMULATION

	Injected parameters	Extracted parameters
Normalised horizontal emittance	0.01 m rad	$5.5 \mu \mathrm{~m} \mathrm{rad}$
Normalised vertical emittance	0.01 m rad	20 nm rad
Bunch length	34.0 mm	6 mm
Energy spread	1.5%	0.11%

SPIN-ORBIT RESONANCES

tune of horizontal
betatron motion
tune of vertical betatron motion
tune of synchrotron motion

Order of resonance: $\left|k_{I}\right|+\left|k_{I I}\right|+\left|k_{I I I}\right|$
> Imperfection resonances or integer resonances: $\left|k_{I}\right|+\left|k_{I I}\right|+\left|k_{I I I}\right|=0$
$\nu_{0}=k_{0} \rightarrow$ one turn spin rotation matrix is unit matrix and \hat{n}_{0} is not unique \hat{n}_{0} is tilted from the vertical and spin precess around a new value of \hat{n}_{0}
> Intrinsic resonances: $\left|k_{I}\right|+\left|k_{I I}\right|+\left|k_{I I I}\right|=1$
Consider vertical betatron oscillations: all spins rotate around \hat{n}_{0} by $2 \pi \nu_{0}$ $\left(\hat{n}_{0}, \hat{m}, \hat{l}\right)$ rotates by $2 \pi k_{I I}$ and spins are rotated by $2 \pi\left(\nu_{0}-k_{I I}\right)$
\rightarrow at $\nu_{0}=k_{I I}$ net spin rotation due to main guide felds vanishes \rightarrow spin motion is affected only by the extra fields "picked-up" along the oscillating trajectory away from closed orbit
> Synchrotron sideband resonances: $\nu_{0}=k_{0} \pm \nu_{x, y}+k_{s} \nu_{s}$
spin precession rate is affected by modulation of energy oscillations

SPIN-ORBIT RESONANCES IN THE ILC DR

SPIN DIFFUSION IN THE ILC DR

SPIN DIFFUSION IN THE ILC DR

SPIN DIFFUSION IN THE ILC DR

150 mrad initial tilt

SUMMARY

- Spin tracking in the ILC DR has been performed.
- Spin-orbit resonance at 5 GeV that has been found for DTC04 3.2 km damping ring lattice leads to depolarization about 11%.
> At 5.066 GeV energy away from resonances depolarization is 0.27%
> Depolarization due to initial tilt of spins from vertical direction is 0.75%.

