The Spin Dynamics Simulation Suite ${\rm POLE}$

Jan Schmidt, Oliver Boldt and Wolfgang Hillert

Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn

Linear Collider Forum - April 29, 2014

Bundesministerium für Bildung und Forschung

Purpose of POLE

Simulating polarization

- energy of some GeV
- time scale < seconds</p>
- energy ramps
- crossing isolated depolarizing resonances
- synchrotron motion & radiation effects
- not: equilibrium polarization

Electron Stretcher Accelerator

Electron Stretcher Accelerator

Electron Stretcher Accelerator

Purpose of POLE

fast

- ✓ 'get an idea'
- ✓ systematic parameter studies
- ✓ balance accuracy against computing time

accessible

- \checkmark regular desktop PCs
- $\checkmark\,$ using MAD-X & Elegant
- $\checkmark\,$ open source release

The basic concept of POLE

Thomas-BMT equation

$$rac{\mathrm{d}}{\mathrm{d}t}ec{\mathcal{S}}(t)pprox c\cdotec{\mathcal{S}}(t) imes \left[\left(1+\gamma(t) a
ight)ec{ extsf{B}}_{\perp}(t) \ + \ (1+a) \,ec{ extsf{B}}_{\scriptscriptstyle ec{ extsf{H}}}(t)
ight]$$

with
$$\vec{\tilde{B}} := \frac{e}{p}\vec{B}$$

Runge-Kutta algorithm, adaptive step size

Polarization

$$ec{P} = rac{1}{N}\sum_{i=1}^Nec{S}_i$$

The basic concept of $\ensuremath{\operatorname{POLE}}$

crossing integer resonances at $\gamma(t)a \in \mathbb{N}$

• driven by $\vec{B}_x(t)$ with revolution harmonic frequencies

Magnetic Field as Fourier Series

$$ilde{B}(t) pprox \sum_i A_i \cos(2\pi f_i \cdot t + arphi_i) \quad ext{with} \quad f_i = i \cdot f_{\mathsf{rev}}$$

Vertical magnetic fields (one revolution)

Vertical magnetic fields (one revolution)

Vertical magnetic fields (one revolution)

Spin precession during one revolution ($\gamma a = 3$)

Spin precession during one revolution ($\gamma a = 3$)

Horizontal magnetic fields

Horizontal magnetic fields

Vertical Polarization while crossing Integer Resonance $\gamma a = 3$ with 4 GeV/s

Convergence of polarization after crossing $\gamma a = 3$

Convergence of polarization after crossing $\gamma a = 3$

The basic concept of POLE

crossing intrinsic resonances at $\gamma a = k_x Q_x + k_z Q_z + kP$

• driven by tune \Rightarrow particle trajectories

Magnetic Field as Fourier Series

$$ilde{B}(t) pprox \sum_i A_i \cos(2\pi f_i \cdot t + arphi_i) \quad ext{with } f_i = i \cdot rac{f_{\mathsf{rev}}}{N_{\mathsf{rev}}}$$

The basic concept of POLE

crossing intrinsic resonances at $\gamma a = k_x Q_x + k_z Q_z + kP$

• driven by tune \Rightarrow particle trajectories

Magnetic Field as Fourier Series

$$ilde{B}(t) pprox \sum_{i} A_i \cos(2\pi f_i \cdot t + arphi_i) \quad ext{with } f_i = i \cdot rac{f_{\mathsf{rev}}}{N_{\mathsf{rev}}}$$

$Composition \ of \ {\rm POLE}$

$\operatorname{BSUPPLY}$

Exemplary program output

 16440 sampling points along ring maxinum frequency used for 8-field evaluation: fmax_x=fmax_z=30 B-field amplitudes only used if above 2e-06 1/m 24 dipoles, 40 quadrupoles, 12 sextupoles, 30 kickers read from /hone/schnidt/Projects/crossing_present/madx/madx.twiss 40 BPMs(@Quad) read from /hone/schnidt/Projects/crossing_present/madx/madx.twiss trajectory of particle 1 read at 33 observation points for 1000 turns Calculate field distribution 	Bsupply: calculate magnetic field & spectrum
Calculate field distribution	 16440 sampling points along ring maxinum frequency used for B-field evaluation: fmax_x=fmax_z=30 B-field amplitudes only used if above 2e-06 1/m 24 dipoles, 40 quadrupoles, 12 sextupoles, 30 kickers read from /home/schmidt/Projects/crossing_present/madx/madx.twiss 40 BPMs(@Quad) read from /home/schmidt/Projects/crossing_present/madx/madx.twiss trajectory of particle 1 read at 33 observation points for 1000 turns
Calculate spectra (FFI)	Calculate field distribution Calculate spectra (FFT)
 Wrote /home/schmidt/Projects/crossing_present/inout/lattice.dat Wrote /home/schmidt/Projects/crossing_present/inout/ppms.dat Wrote /home/schmidt/Projects/crossing_present/inout/vcorrs.dat Wrote /home/schmidt/Projects/crossing_present/inout/vcorrs.dat Wrote /home/schmidt/Projects/crossing_present/inout/vcorrs.dat Wrote /home/schmidt/Projects/crossing_present/inout/vcors.dat Wrote /home/schmidt/Projects/crossing_present/inout/vcors.dat Wrote /home/schmidt/Projects/crossing_present/inout/vcors.dat Wrote /home/schmidt/Projects/crossing_present/inout/vcors.dat Wrote /home/schmidt/Projects/crossing_present/inout/vcors.dat Wrote /home/schmidt/Projects/crossing_present/inout/dipolelengths.dat Wrote [48 frequency components] /home/schmidt/Projects/crossing_present/inout/vertical.spectrum Wrote [0 frequency components] /home/schmidt/Projects/crossing_present/inout/longitudinal.spectrum 	<pre>Wrote /home/schnidt/Projects/crossing_present/inout/lattice.dat Wrote /home/schnidt/Projects/crossing_present/inout/bpms.dat Wrote /home/schnidt/Projects/crossing_present/inout/vcorrs.dat Wrote /home/schnidt/Projects/crossing_present/inout/interp_bpms.dat Wrote /home/schnidt/Projects/crossing_present/inout/veal_x.dat Wrote /home/schnidt/Projects/crossing_present/inout/veal_x.dat Wrote /home/schnidt/Projects/crossing_present/inout/dipolelengths.dat Wrote / dat frequency components] /home/schnidt/Projects/crossing_present/inout/vertical.spectrum Wrote [d3 frequency components] /home/schnidt/Projects/crossing_present/inout/longitudinal.spectrum Wrote [0 frequency components] /home/schnidt/Projects/crossing_present/inout/longitudinal.spectrum</pre>

$\operatorname{TBMTSOLVER}$ configuration

Graphical User Interface

Figure 1: Verification of magnetic field via plotting in frequency respective in time domain.

1.2 General Parameters

Urgently needed parameters have to be merged into a config-file called "project_path/inout/config_tbut.dat". The definition of the initial conter energy "InitialEmergy [GeV]" and the energy increment per second "RampingSpeed [GeV/s]" are the most clear parameters in this context. So is the observed time interval in between the start time "TimeStart [5]" and the end time "TimeSpop [6]" (see Config 2).

InitialEnergy [GeV]:	1.2
RampingSpeed [GeV/s]:	4.0
RampStop [true,false]:	false
a*gamma @ Rampstop:	6.005
TimeStart (s):	0.025
TimeStop [s]:	0.035

Config 2: Setup of the start energy and the energy gain per second. The start- and stop time define the

log:		
found	FreqArg2: FreqArg2:	4
found found	HisSdBhwlior: PhanArg1: HisSdrg2:	-

The default prostume of the orientation of the spin ensemble is a cone-like distribution. The definition of such a cone is given by the number of particle spins, by the orientation and the length of the polarization vector, certainly of smaller length than one. The length of the polarization vector defines the 'StartPolarization', the direction vector is parallel to the polarization vector'DirectionPolarization', is given by three entries (x_i, x_j and has not to be normalized.

itartPolarization:	0.9				
irectionPolarization:	direct_x:	0.0	direct_z 1.0	direc	Ls: 0.0
lumberParticles:	1000				
Config	5: Description of	the orientation of th	e ensemble of par	ticle spins.	
mplitude8ehavior:	gaussian	• center:	1.5	sigma:	0.5

Couffig 6 Details studies of decoherent spin motion demand varying start settings of each spin. Therefore, you can adjust a deterministic or (uniform or gaussian) random distribution (if nothing is checked, the default value is 0.

92400

Synchrotron motion & Depolarization

Thomas-BMT equation

$$rac{\mathrm{d}}{\mathrm{d}t}\langleec{S}
angle(t)pprox c\cdot\langleec{S}
angle(t) imes\left[(1+\gamma(t)\mathsf{a})\,ec{ extsf{B}_{\perp}}(t)\,+\,(1+\mathsf{a})\,ec{ extsf{B}_{ec{ec{N}}}}(t)
ight]$$

Depolarization

Resonance Strengths

'get an idea' of depolarizing resonances - immediately from a MAD-X or Elegant lattice

Summary & Outlook

- ✓ resonance crossing (*some minutes*)
- ✓ 'get an idea' of resonance strengths (*some seconds*)
- $\checkmark \quad \mathsf{depolarization} \ \mathsf{if} \ \vec{P} \ \# \ \vec{B}_{\mathsf{guide}}$
- \checkmark ... based on MAD-X or Elegant & running on regular desktop PCs

coming:

- benchmarking at ELSA
- open source release

Interested in testing POLE? schmidt@physik.uni-bonn.de

Thank you for your attention!

Interested in testing POLE?

schmidt@physik.uni-bonn.de

$$\gamma_i(t) = \gamma_0(t) + \underline{A_i \cos(\omega_i t + \phi_i)}$$

• Gaussian distributed $A_i \& \omega_i$ • uniformly distributed ϕ_i

Model: constant energy offset

