## Stefan Liebler

# Off-shell effects and signal-background interference in $H \rightarrow VV$ at the (I)LC

# Helmholtz-Alliance LC Forum



Bonn - 30 April 2014

University of Hamburg



DESY

HELMHOLTZ

**GEMEINSCHAFT** 







How to obtain information about the total Higgs width  $\Gamma_H$ ?  $\rightarrow$  Measure the Breit-Wigner peak e.g. in  $H \rightarrow \gamma \gamma$ ?







How to obtain information about the total Higgs width  $\Gamma_H$ ?  $\rightarrow$  Measure the Breit-Wigner peak e.g. in  $H \rightarrow \gamma \gamma$ ?







 $\rightarrow$  LC unique method: Higgs width  $\Gamma_H$  through the Z recoil at  $\sqrt{s}=250\,{\rm GeV}$ 



Higgsstrahlung  $e^{-}$  $e^{+}$ Observe:  $Z \rightarrow \mu^{+}\mu^{-}$ 

Reconstruct:  $\sigma_P = \sigma(e^+e^- \rightarrow HZ) \propto g_{HZZ}^2$ (needs defined initial state)

Obtain absolute BR: BR $(H \to X) = (\sigma_P BR_X) / \sigma_P$ 

 $\begin{array}{l} \mbox{Reconstruct (example):} \\ \Gamma_H \propto \Gamma(H \rightarrow ZZ) / \mbox{BR}(H \rightarrow ZZ) \\ \propto g^2_{HZZ} / \mbox{BR}(H \rightarrow Z) \end{array}$ 

Details: [1311.7155: Han, Liu, Sayre]

UН

Шi



Two questions: Is it possible to extract the total width from interference effects/off-shell contributions in  $H \rightarrow VV$  (LHC inspired methods)? Might off-shell contributions be problematic for the *Z* recoil method?

▷ 1. Quantification of contributions  $m_{VV} > 2m_V$  in  $H \rightarrow VV$ 

[1206.4803; Kauer, Passarino: Inadequacy of zero-width approximation for a light H boson signal] [1305.2092, 1310.7011; Kauer:

Interference effects for  $H \rightarrow WW/ZZ \rightarrow l\bar{\nu}_l \bar{l}\nu_l$  searches in gluon fusion at the LHC] [1307.4935; Caola, Melnikov: Constraining the Higgs boson width with ZZ production at the LHC] Further elaboration of bounding the Higgs width in [1310.1397, 1311.3589, 1312.1628] Application by CMS: [CMS-PAS-HIG-14-002]

▷ 2. Interferometry with background in  $H \rightarrow \gamma\gamma$ [1208.1533, 1303.3342; Martin: Shift in the  $H \rightarrow \gamma\gamma$  mass peak from interference with background] Further elaboration of the mass peak shift in [1303.1397, 1305.3854]

 $\rightarrow$  Can also be investigated at the (I)LC!

UH

Шi





1. Discussion of off-shell contributions  $m_{ZZ} > 2m_Z$  in  $H \rightarrow ZZ$ 

$$\begin{pmatrix} \frac{d\sigma_{zWA}^{\nu\bar{\nu}ZZ}}{dm_{ZZ}} \end{pmatrix} = \sigma^{\nu\bar{\nu}H}(m_H) \frac{2m_{ZZ}}{(m_{ZZ}^2 - m_H^2)^2 + (m_H\Gamma_H)^2} \frac{m_H\Gamma_{H\to ZZ}(m_H)}{\pi} \\ \begin{pmatrix} \frac{d\sigma_{\text{off}}^{\nu\bar{\nu}ZZ}}{dm_{ZZ}} \end{pmatrix} = \sigma^{\nu\bar{\nu}H}(m_{ZZ}) \frac{2m_{ZZ}}{(m_{ZZ}^2 - m_H^2)^2 + (m_H\Gamma_H)^2} \frac{m_{ZZ}\Gamma_{H\to ZZ}(m_{ZZ})}{\pi}$$

Second equation describes the proper calculation of  $e^+e^- \rightarrow \nu\bar{\nu}ZZ$  at LO!









Quantification for the two production processes for different  $\sqrt{s}$ : signal (black), signal+background (blue)







Relative contribution to the total signal cross section:  $\text{Pol}(e^+,e^-) = (0.3,-0.8)$ 

| With                       | $\sigma_X(m_V^d)$                                                                                   | $(w_V, m_{VV}^u) = \int_{m_{VV}^d}^{m_{VV}^u} dv$ | $dm_{VV}\left($                                                                                 | $\left(\frac{d\sigma_X}{dm_{VV}}\right)$ v       | ve define                                                                         | • |
|----------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|---|
| $\Delta_{\rm off}^{ZZZ}$ = | $=\frac{\sigma_{\rm off}^{ZZZ}(130{\rm GeV},\sqrt{s}-m_Z)}{\sigma_{\rm off}^{ZZZ}(0,\sqrt{s}-m_Z)}$ |                                                   | and $\Delta_{\text{off}}^{\nu\bar{\nu}ZZ} = \frac{\sigma_{\text{off}}^{\nu\bar{\nu}Z}}{\sigma}$ |                                                  | $\frac{^{Z}(130\text{GeV},\sqrt{s})}{^{\nu\bar{\nu}ZZ}_{\text{off}}(0,\sqrt{s})}$ |   |
|                            | $\sqrt{s}$                                                                                          | $\sigma_{\rm off}^{ZZZ}(0,\sqrt{s}-m_Z)$          | $\Delta_{\rm off}^{\scriptscriptstyle ZZZ}$                                                     | $\sigma_{\rm off}^{\nu\bar\nu_{ZZ}}(0,\sqrt{s})$ | $\Delta_{\rm off}^{\nu\bar\nu ZZ}$                                                |   |
|                            | $250\mathrm{GeV}$                                                                                   | 3.12 fb                                           | 0.03%                                                                                           | 0.490 fb                                         | 0.12%                                                                             |   |
|                            | $300{\rm GeV}$                                                                                      | 2.40 fb                                           | 1.83 %                                                                                          | 1.12 fb                                          | 0.40%                                                                             |   |
|                            | $350\mathrm{GeV}$                                                                                   | 1.82 fb                                           | 7.77%                                                                                           | 1.91 <b>fb</b>                                   | 0.88%                                                                             |   |
|                            | $500{\rm GeV}$                                                                                      | 0.981 fb                                          | 24.1 %                                                                                          | 4.78 fb                                          | 2.96%                                                                             |   |
|                            | 1 TeV                                                                                               | 0.341 fb                                          | 50.9%                                                                                           | 15.0 fb                                          | 13.0%                                                                             |   |

#### Comments:

- $\triangleright \Delta_{\text{off}}$  independent of the polarisation.
- $\triangleright$  For  $H \rightarrow ZZ \rightarrow 4l$  off-shell contributions accessible by  $m_{4l}$ .
- $\leftrightarrow \text{ For } H \rightarrow WW \rightarrow 2l2\nu \text{ not directly accessible! } \leftrightarrow Z \text{ recoil method!}$
- Very important: High precision in Higgs mass measurement!





How can the width be determined from off-shell contributions?

$$\sigma_{\rm ZWA}^{ZZZ} = \sigma^{ZH}(m_H) \frac{\Gamma_{H \to ZZ}(m_H)}{\Gamma_H} \propto \frac{g_{HZZ}^4}{\Gamma_H}$$

Rescaling  $g'_{HZZ} = \xi g_{HZZ}$ ,  $\Gamma'_H = \xi^4 \Gamma_H$  does not change  $\sigma^{ZZZ}_{ZWA}$ !  $\rightarrow$  Vary  $\Gamma_H$  (in reasonable interval!) and leave  $\sigma_{ZWA}$  constant!  $\rightarrow$  Off-shell contributions  $\propto g^4_{HZZ} \rightarrow \Delta_{\text{off}}$  changes!.



Can the off-shell cont. be discriminated from the background?





## Comment on the background:



Inclusive cross sections for  $m_{ZZ}>130\,{\rm GeV}$  for  ${\rm Pol}(e^+,e^-)=(0.3,-0.8)$  :

| $\sqrt{s}$     | $\sigma_{\rm all}^{\rm ZZZ}$ | $\Delta_{\rm SB}^{ZZZ}$ | $\sigma_{\rm all}^{\nu\bar\nu ZZ}$ | $\Delta_{\rm SB}^{\nu\bar\nu ZZ}$ |
|----------------|------------------------------|-------------------------|------------------------------------|-----------------------------------|
| $250{\rm GeV}$ |                              |                         | 0.32 fb                            | 0.18%                             |
| $300{\rm GeV}$ | 0.34 fb                      | 12.9 %                  | 0.33 fb                            | 1.36 %                            |
| $350{\rm GeV}$ | 1.19 fb                      | 11.9 %                  | 0.54 fb                            | 3.07 %                            |
| $500{\rm GeV}$ | 2.06 fb                      | 11.6%                   | 1.72 fb                            | 8.20%                             |
| 1 TeV          | 1.71 fb                      | 10.2%                   | 15.9 fb                            | 12.2%                             |

 $\Delta_{\text{SB}} \leftrightarrow \text{Signal/Background in off-shell region.}$ 

Further studies: Needs simulation with leptonic/hadronic final states!





2. Interferometry with the background in  $H\to\gamma\gamma$ 







### Interferometry with the background in $H\to\gamma\gamma$

$$\begin{aligned} \frac{d\sigma^{sig}}{dm_{\gamma\gamma}} &= \frac{S}{(m_{\gamma\gamma}^2 - m_H^2)^2 + m_H^2\Gamma_H^2} \to \sigma^{sig} = \frac{\pi S}{2m_H^2\Gamma_H} \\ \frac{d\sigma^{int}}{dm_{\gamma\gamma}} &= \frac{(m_{\gamma\gamma}^2 - m_H^2)R + m_H\Gamma_H I}{(m_{\gamma\gamma}^2 - m_H^2)^2 + m_H^2\Gamma_H^2} \to \sigma^{int} = \frac{\pi I}{2m_H} \end{aligned}$$

Relevant part: R induces shift of the peak without changing the incl. XS!

Smearing due to detector resolution: Gaussian *G* with e.g.  $\hat{\sigma}^G = 1 \text{ GeV}$ 

$$\frac{d\sigma^G}{dm_{\gamma\gamma}} = \int_0^\infty dm'_{\gamma\gamma} G(m_{\gamma\gamma} - m'_{\gamma\gamma}, \hat{\sigma}^G) \frac{d\sigma}{dm'_{\gamma\gamma}}$$

 $\rightarrow$  Visible shift  $\Delta m_H$  of the mass peak! Depending on  $\hat{\sigma}^G$ ,  $E_{\gamma}$ ,  $\eta_{\gamma}$ ,  $\sqrt{s}$ ,  $\delta_{\gamma}$ , (Pol).







Mimic the method of peak extraction:





Higgs width dependence?

Perform similar rescaling of the couplings  $g_{HZZ}, g_{HWW}, g_{HAA}$ and the width  $\Gamma_H$  to keep  $\sigma_{ZWA}$  constant.

 $\hat{\sigma}^{G} = 1 \text{ GeV (solid)}, 1.5 \text{ GeV (dashed)}$   $\Gamma_{H} = 1 \text{ MeV (red)}, 4.07 \text{ MeV (black)}, 15 \text{ MeV (blue)}$   $\hat{\sigma}^{0.6}_{V_{S} = 500 \text{ GeV}}$   $\hat{\sigma}^{0.6}_{V_{S} = 500 \text{ GeV}}$ 



Further studies: Perform analysis with detector simulation?!





Conclusions:

- ▷ LC offers unique possibility to measure Higgs width through Z recoil measurements in  $e^+e^- \rightarrow ZH$  at 250 GeV. For larger  $\sqrt{s}$  be aware of off-shell contributions  $m_{VV} > 2m_V$  in  $H \rightarrow ZZ/WW!$
- ▷ Recently discussed ideas to measure/bound Higgs width at LHC through
  - interferometry with background in  $H\to\gamma\gamma$
  - off-shell contributions  $m_{VV} > 2m_V$  in  $H \rightarrow ZZ/WW$  can be used at the (I)LC as well!
- ▷ For all purposes a well determined Higgs mass is necessary.

Simulation with fermionic/hadronic final states on order! If you are interested, let me know!

Thank you for your attention!