Phenomenology with SUSY models with extended Higgs sector

Stefano Porto

with G. Moortgat-Pick, K. Rolbiecki and M. McGarrie

Linear Collider Forum 2014

Bonn, April 29th, 2014

Outline

Introduction: minimal extensions of MSSM.

- Distinguishing NMSSM and MSSM through the neutralino/chargino sector.
- Footprints of gauge extended MSSM: Higgs couplings.
- Conclusions and outlook.

Minimal extensions of the MSSM

The 125.5 GeV Higgs looks like the SM Higgs: is it true?

Which classes of BSM models would be consistent with it?

Motivated by Naturalness, several extensions of MSSM have been introduced:

F-term extensions

- MSSM + singlet: NMSSM
- MSSM $+ SU(2)_L$ -doublets
- MSSM + $SU(2)_L$ -triplets
- ...

D-term extensions

- Quiver models:
 - Vector Higgs case
 - Chiral Higgs case
- . . .

NMSSM vs MSSM: neutralino/chargino sector

G. Moortgat-Pick, SP, K. Rolbiecki: 1404.1053, 1405.xxxx

μ -problem and NMSSM

MSSM

1 spartner \forall SM particle, 2 Higgs Doublets.

$$W_{h, \, \text{MSSM}} = \mu \, \hat{H}_{u} \cdot \hat{H}_{d}$$

 \longrightarrow " μ -problem": why μ should be at the SUSY-breaking scale?

NMSSM

MSSM + gauge singlet superfield $\hat{S} = (S, \tilde{S})$.

$$W_{h, (\mathbb{Z}_3-)NMSSM} = \lambda \, \hat{S} \, \hat{H}_u \cdot \hat{H}_d + \frac{\kappa}{3} \hat{S}^3$$

$$\longrightarrow \mu_{\mathrm{eff}} = \lambda \langle \mathcal{S} \rangle = \lambda \, x.$$

How to distinguish between NMSSM and MSSM scenarios?

MSSM vs NMSSM?

MSSM

$$h, H, A, H^{\pm}$$
: tan β, m_A

$$\tilde{\chi}_1^{\pm}, \, \tilde{\chi}_2^{\pm} \colon M_2, \, \mu, \, \tan \beta$$

$$\tilde{\chi}_{1,2,3,4}^{0}$$
: M_{1} , M_{2} , μ , $\tan \beta$

$(\mathbb{Z}_{3}$ -)NMSSM

$$S_{1,2,3}$$
, $P_{1,2}$, H^{\pm} : tan β , λ , x , κ , A_{λ} , A_{κ}

$$\tilde{\chi}_1^{\pm},\,\tilde{\chi}_2^{\pm}\colon\, M_2,\,\lambda\cdot x,\, aneta$$

$$\tilde{\chi}^0_{1,2,3,4,5}$$
: $M_1,~M_2,~\lambda,~x,~\kappa, aneta$

To pinpoint the underlying model, one would usually look only at the Higgs scalar sector. [Benbrik et al., 1207.1096]

What if, given a MSSM and NMSSM scenarios:

- Higgs spectra are not distinguishable at the LHC and/or not reachable at the LC?
- Very similar chargino/neutralino spectra?
- Close $\sigma(e^+e^- \to \tilde{\chi}_i^0 \tilde{\chi}_j^0)$, $\sigma(e^+e^- \to \tilde{\chi}_i^+ \tilde{\chi}_i^-)$?

 \Rightarrow Focus on this

These conditions are possible for unconstrained scenarios [hep-ph/0502036].

Strategy: chargino/neutralino sectors for model distinction

We assume:

- We measure at LHC/LC only the light SUSY masses: $m_{\tilde{\chi}_{1,2}^0}, m_{\tilde{\chi}_1^\pm}$ ($m_{\tilde{\nu}}, m_{\tilde{e}_{R,L}}$); squarks $\sim \mathcal{O}(1 \text{ TeV})$.
- Experimental uncertainties: $\delta m_{\tilde{\chi}_1^\pm}$, $\delta m_{\tilde{\chi}_1^0}$, $\delta m_{\tilde{\chi}_2^0} \sim 0.1\%$.
- At the LC:
 - We exploit polarized beams: $P_{e^-} \in [-0.9, +0.9]$, $P_{e^+} \in [-0.6, +0.6]$.
 - We measure $\sigma(e^+e^- \to \tilde{\chi}_1^0 \tilde{\chi}_2^0)$ and $\sigma(e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^-)$ at $\sqrt{s}=350$ ($t\bar{t}$ threshold), 500 GeV.

The strategy is to:

- χ^2 -fit with Minuit the measured values to the MSSM parameters $M_1,~M_2,~\mu, \tan\beta$. [Desch et al '03]
- Check the compatibility of the fitted (tree-level)-parameters with the MSSM.
- From the reconstructed parameters, derive MSSM neutralinos, as $m_{\tilde{\chi}^0_3}$, and cross-check at LHC/LC.

Example: Light singlino scenario

For $M_1 > M_2$, contempled also in AMSB, one can get (also [hep-ph/0502036]):

	M ₁ [GeV]	M ₂ [GeV]	$\mu, \mu_{\it eff} = \lambda \cdot x \; [{\sf GeV}]$	aneta	κ	λ
MSSM	411	115.7	358.5	8		
NMSSM	365	111	484	9.5	0.16	0.06

Leading to $m_h = 125$ GeV and, and the tree-level masses [GeV]:

	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}^0_2}$	$m_{ ilde{\chi}_3^0}$	$m_{ ilde{\chi}^0_4}$	$m_{ ilde{\chi}_5^0}$	$m_{ ilde{\chi}_1^\pm}$	$m_{ ilde{\chi}_2^\pm}$
MSSM	105.0	354.8	364.6	431.5		105.2	379.2
NMSSM	104.9	354.8	364.7	489.7	504	105.1	498.5

We also take $m_{\tilde{e}_l} = 303.5$, $m_{\tilde{e}_R} = 303$, $m_{\tilde{\nu}_e} = 293.3$ GeV.

MSSM	Β̃		\tilde{H}_a	\tilde{H}_b	NMSSM	B	Ŵ	\tilde{H}_a	\tilde{H}_b	Š
$ ilde{\chi}^0_1$	0.0%	93.0%	1.7%	5.4%	$\tilde{\chi}_1^0$	0.0%	96.6%	0.6%	2.8%	0.0%
$ ilde{\chi}_2^0$	25.4%	4.9%	43.2%	26.6%	$ ilde{\chi}^0_2$	63.6%	0.4%	3.6%	2.7%	29.8%
$ ilde{\chi}^0_3$	0.1%	1.1%	38.3%	60.5%	$ ilde{\chi}^0_3$	31.0%	0.0%	0.0%	0.3%	68.8%

Example: Light singlino scenario - fit

$$\sigma_{ extsf{LO}}(e^+e^-
ightarrow ilde{\chi}_1^+ ilde{\chi}_1^-)$$
 [fb]

$$\sigma_{\text{LO}}(e^+e^-
ightarrow ilde{\chi}_1^0 ilde{\chi}_2^0)$$
 [fb]

$\sqrt{s} = 350 \text{ GeV}$	MSSM	NMSSM
P=(-0.9,0.6)	2496.66±4.19	2578.73±4.31
P=(0.9,-0.6)	39.64±0.75	42.48±0.77
$\sqrt{s}=$ 500 GeV	MSSM	NMSSM
$\sqrt{s} = 500 \text{ GeV}$ $P = (-0.9, 0.6)$	MSSM 1167.64±2.16	NMSSM 1213.41±2.22

\sqrt{s} =500 GeV	MSSM	NMSSM
P=(-0.9,0.6)	20.68±0.32	18.80±0.30
P=(0.9,-0.6)	.38±0.03	.29±0.02

• $\delta m/m = 0.1\%$; $\delta Pol/Pol = 0.5\%$; Statistic error: 1 σ at $\int \mathcal{L} = 500 \text{ fb}^{-1}$.

 χ^2 -fit with NMSSM $m_{\tilde\chi_1^0}$, $m_{\tilde\chi_2^0}$, $m_{\tilde\chi_1^\pm}$, $\sigma_{L,R}(e^+e^- o \tilde\chi_1^+ \tilde\chi_1^-)$ and $\sigma_{L,R}(e^+e^- o \tilde\chi_1^0 \tilde\chi_2^0)$ to MSSM parameters:

M_1 [GeV]	<i>M</i> ₂ [GeV]	μ [GeV]	aneta
362.7 ± 0.4	108.3±0.1	519.6±8.7	unconstrained \gtrsim 8

Fit result excludes that the "data" are consistent with the MSSM ($\chi^2/\text{d.o.f.} = 220.8/11$).

Classes of scenarios

Looking at the NMSSM chargino/neutralino sector, we can distinguish two classes:

• High \tilde{S} admixture in $\tilde{\chi}_1^0$ or $\tilde{\chi}_2^0$ [hep-ph/0502036].

Easier to distinguish from MSSM looking at higgsino/gaugino features of neutralino from decay channels.

- \tilde{S} , mainly in the heavier states $\tilde{\chi}_3^0, \tilde{\chi}_4^0, \tilde{\chi}_5^0$:
 - $\mu < M1, M2$
 - $\mu > M1, M2$

Trickier scenario to be distinguished from MSSM, due to similar admixture in the lighter neutralinos and MSSM-like signatures.

G. Moortgat-Pick, SP, K. Rolbiecki: 1404.1053, 1405.xxxx

Heavy singlino, case 1: $\mu < M_1 < M_2$

	M_1 [GeV]	M ₂ [GeV]	$\mu, \mu_{\mathit{eff}} = \lambda \cdot x$ [GeV]	aneta	A_{λ}	A_{kappa}
MSSM/NMSSM	450	1600	120	27	3000	-30

MSSM neutralino/chargino tree-level spectrum in [GeV]:

$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}_2^0}$	$m_{ ilde{\chi}^0_3}$	$m_{\tilde{\chi}_4^0}$	$m_{ ilde{\chi}_1^{\pm}}$	$m_{ ilde{\chi}_2^{\pm}}$
114.80	123.28	454.41	1604.08	119.40	1604.08

NMSSM, scanning the $\lambda - \kappa$ plane with:

- NMSSMTools-4.2.1 and micrOMEGAs-3.0 for pheno and DM constraints.
 [Ellwanger et Al. '05], [Das et Al '11], [Belanger et Al. '05]
- HiggsBounds-4.0.0 and HiggsSignals-1.0.0 to check the Higgs sector.
 [Bechtle et Al. '05, '13]

White areas correspond to excluded points.

Heavy singlino, case 1: $\mu < M_1 < M_2$, $\sigma(e^+e^- \to \tilde{\chi}_1^0\tilde{\chi}_2^0)$

MSSM, $\sigma(\mathrm{e^+e^-} \to \tilde{\chi}_1^0 \tilde{\chi}_2^0)$ [fb]	$\sqrt{s} = 350 \text{ GeV}$	$\sqrt{s} = 500 \text{ GeV}$
P=(-0.9,0.55)	791.7	391.4
P=(0.9,-0.55)	526.7	261.7

NMSSM:

Heavy singlino, case 1: $\mu < M_1 < M_2$

Assuming $\delta m/m=0.5\%$ and $\delta\sigma/\sigma=1\%$, the χ^2 -fit finds regions with that are not compatible with the MSSM.

Search for heavier resonance $m_{\tilde{\chi}^0_2}$ at the ILC/LHC can point to the NMSSM.

Heavy singlino, case 2: $M_2 < M_1 < \mu$

	M_1 [GeV]	M ₂ [GeV]	$\mu, \mu_{\mathit{eff}} = \lambda \cdot x$ [GeV]	aneta	A_{λ}	A _{kappa}
MSSM/NMSSM	240	105	505	9.2	3700	-50

MSSM neutralino/chargino tree-level spectrum in [GeV]:

$m_{\tilde{\chi}_1^0}$	$m_{\tilde{\chi}^0_2}$	$m_{\tilde{\chi}_3^0}$	$m_{\tilde{\chi}_4^0}$	$m_{ ilde{\chi}_1^{\pm}}$	$m_{\tilde{\chi}_2^{\pm}}$
99.46	237.03	510.13	518.65	99.55	518.71

NMSSM:

Assuming $\delta m/m = 0.5\%$ and $\delta \sigma/\sigma = 1\%$, the χ^2 -fit is not sufficient to distinguish from MSSM.

Heavy singlino, case 2: $M_2 < M_1 < \mu$

A possibility is to look for the heavier neutralino and Higgs resonances at the LHC or TeV-LC.

Detecting $\tilde{\chi}_3^0$ can be the key issue; while in the MSSM $m_{\tilde{\chi}_3^0} = 510$ GeV, in the NMSSM:

One may also look for the lightest CP-odd Higgs, A_1 , $\sim 100\%$ S-like, studying its decays.

Higgs couplings & non-decoupling D-terms

M. McGarrie, G. Moortgat-Pick, SP, 1405.xxxx

Quiver models and non-decoupling D-terms

P. Batra, A. Delgado, D. E. Kaplan, and T. M. Tait, [hep-ph/0404251].

$$G_A, G_B, \ldots$$
 copies of $SU(2) \times U(1)$

$$L$$
, \tilde{L} get vevs at scale \gtrsim TeV \Longrightarrow $G_A imes G_B$ breaks to $SU(2)_L imes U(1)_Y$

Additional non-decoupling D-terms in the Higgs potential

Features

- Higgs mass lifted at the tree-level, relaxing naturalness.
- Almost vanishing contributions to EW observables.
- GUT can be recovered . . .

Gauge extended MSSM: quiver models

Vector Higgs case

$$\begin{split} \delta\mathcal{L} &= -\frac{3}{5}\frac{g_1^2\Delta_1}{8}(H_u^\dagger H_u - H_d^\dagger H_d)^2 \\ &- \frac{g_2^2\Delta_2}{8}\sum_{a}(H_u^\dagger \sigma^a H_u + H_d^\dagger \sigma^a H_d)^2 \\ m_{h,0}^2 &= \left[m_Z^2 + \left(\frac{3}{5}\frac{g_1^2\Delta_1 + g_2^2\Delta_2}{4}\right)v^2\right]\cos^2 2\beta \\ \Delta_i &= \left(\frac{g_{A_i}^2}{g_{E}^2}\right)\frac{m_{l_i}^2}{m_{V_i}^2 + m_l^2} \end{split}$$

Chiral Higgs case

$$\begin{split} \delta \mathcal{L} &= -\frac{3}{5} \frac{g_1^2 \Omega_1}{8} (\xi_1 H_u^\dagger H_u + \frac{1}{\xi_1} H_d^\dagger H_d)^2 \\ &- \frac{g_2^2 \Omega_2}{8} \sum_a (\xi_2 H_u^\dagger \sigma^a H_u - \frac{1}{\xi_2} H_d^\dagger \sigma^a H_d)^2 + \dots \\ m_{h,0}^2 &= \left[m_Z^2 + \left(\frac{\frac{3}{5} g_1^2 \xi_i \Omega_1 + g_2^2 \xi_2 \Omega_2}{4} \right) v^2 \right] + \mathcal{O}(\frac{1}{\tan^2 \beta}, \xi_i) \\ &\xi_i &= \frac{g_{Ai}}{g_{Bi}} \quad , \quad \Omega_i &= \frac{m_1^2}{m_{v_i}^2 + m_L^2} \end{split}$$

Example: vector Higgs case and Naturalness

$$\Delta_{BG} = \left| \frac{2\delta \textit{m}_{\textit{H}_{\textit{u}}}^2}{\textit{m}_{\textit{Z}}^2} \right| \quad \Longrightarrow \quad \Delta_{\textit{D-Term}} = \left| \frac{2\delta \textit{m}_{\textit{H}_{\textit{u}}}^2}{\textit{m}_{\textit{h},0}^2/\cos^2(2\beta)} \right| = \left| \frac{2\delta \textit{m}_{\textit{H}_{\textit{u}}}^2}{\textit{m}_{\textit{Z}}^2 + \textit{m}_{\Delta}^2} \right|.$$

Quiver models: coupling enhancement

General renormalizable 2HDM scalar Higgs potential:

J. F. Gunion and H. E. Haber, [hep-ph/0207010]

$$\begin{split} \mathcal{V} &= m_1^2 |H_d|^2 + m_2^2 |H_u|^2 + m_{12}^2 (H_u H_d + H_u^\dagger H_d^\dagger) \\ &+ \frac{\lambda_1}{2} |H_d|^2 + \frac{\lambda_2}{2} |H_u|^2 + \lambda_3 |H_u|^2 |H_d|^2 + \lambda_4 |H_d^\dagger H_u|^2 + \frac{\lambda_5}{2} [(H_u H_d)^2 + (H_u^\dagger H_d^\dagger)^2] \\ &+ \lambda_6 |H_d|^2 [(H_u H_d) + (H_u^\dagger H_d^\dagger)] + \lambda_7 |H_u|^2 [(H_u H_d) + (H_u^\dagger H_d^\dagger)] \end{split}$$

For tan $\beta \gtrsim 3$ and heavy H_d one gets:

K. Blum and R. T. D'Agnolo, [1202.2364]

$$c_b \equiv \frac{y_b}{y_b^{SM}} = \left(1 - \frac{m_h^2}{m_H^2}\right)^{-1} \left(1 - \frac{\left[\lambda_3 + \lambda_5\right]v^2}{m_H^2} + \frac{\lambda_7 v^2}{m_H^2}\right) \times \{1 + \mathcal{O}(\frac{1}{\tan^2\beta})\} + \dots$$

$$c_t \equiv \frac{y_t}{y_t^{SM}} = 1 + \frac{\lambda_7 v^2}{2 m_H^4} (1 - c_b^2) \hspace{1cm} c_V \equiv \frac{y_V}{y_V^{SM}} = c_t + \frac{\lambda_7 v^2}{m_H^4} (c_b - 1)$$

Coupling enhancement: vector Higgs case

Model indepedent determination of c_b at linear colliders is considered.

$$c_b^{
m vector} \simeq \left(1 - rac{m_h^2}{m_H^2}
ight)^{-1} \left(1 + rac{[g_2^2(1+\Delta_2) + rac{3}{5}g_1^2(1+\Delta_1)]v^2}{4m_H^2}
ight)$$

Coupling enhancement: chiral Higgs case

Model indepedent determination of c_b at linear colliders is considered.

$$c_b^{
m chiral} \simeq \left(1 - rac{m_h^2}{m_H^2}
ight)^{-1} \left(1 + rac{[g_2^2(1-\Omega_2) + rac{3}{5}g_1^2(1-\Omega_1)]v^2}{4m_H^2}
ight)$$

Conclusions and outlook

Minimal extensions of MSSM, as NMSSM or quiver models

- ullet Relax naturalness raising m_h^{tree} through additional contributions to Higgs quartic couplings.
- ullet Can answer the μ -problem and preserve gauge coupling unification.
- Less constrained by experimental bounds.

At future linear colliders

- Deviations from the SM and the MSSM can be detected looking at the
 - Higgs sector and couplings.
 - Neutralino/chargino sector and production cross sections.
- Polarised beams play a crucial role.

To do:

- Include quantum level precision.
- Include in the NMSSM analysis the production of heavier resonances at LC/LHC; add Higgs sector observables.

Thank you for your attention!

Backup: Higgs sector in the light singlino scenario

[GeV]	MSSM	NMSSM
M ₁	411	365
M ₂	115.7	111
M ₃	600	3 <i>M</i> ₂
taneta	8	9.5
μ	358.5	
$\mu_{\text{eff}} = \lambda x$		484
A_{λ}		4200
A_{κ}		-120
A_{u_3}	1928.	2500.
A_{d_3}	2500.	2000.
A_{e_3}	1500.	2000
M_{l_3}	300	300.
M _{e3}	300	300.
M_{Q_3}	1500	1050.
$M_{Q_{1,2}}$	1500.	1500.
M _{u3}	1500	1000.
$M_{u_{1,2}}$	1500	1500.
Md ₃	1500.	800
$Md_{1,2}$	1500.	1500

	MSSM	NMSSM
m_{S_1}	124.60	124.60
m_{S_2}	4470	335.2
m_{S_3}		4471
m_{P_1}	4470	250.8
m_{P_2}		4471
$m_{H^{\pm}}$	4472	4472

 In the NMSSM, S₂ and P₂ are singlet-like at 99.99%.

Backup: data fit to MSSM and model distinction

 χ^2 -fit with NMSSM $m_{\tilde\chi_1^0}$, $m_{\tilde\chi_2^0}$, $m_{\tilde\chi_1^\pm}$, $\sigma_{L,R}(e^+e^- o \tilde\chi_1^+ \tilde\chi_1^-)$ and $\sigma_{L,R}(e^+e^- o \tilde\chi_1^0 \tilde\chi_2^0)$ to MSSM parameters:

M ₁ [GeV]	M ₂ [GeV]	μ [GeV]	aneta
362.7 ±0.4	108.3±0.1	519.6±8.7	unconstrained \gtrsim 8

Fit result excludes that the "data" are consistent with the MSSM (χ^2 /d.o.f. = 220.8/11).

Moreover, observing the NMSSM $m_{\tilde{\chi}^0_3}=364.7\pm1.8$ GeV. Away from fit $m_{\tilde{\chi}^0_3} \in [520, 532] \text{ GeV } !!$

$ ilde{\chi}^0_3$	\tilde{B}	\tilde{W}	\tilde{H}_a	$ ilde{\mathcal{H}}_b$	Š
NMSSM					68.8%
MSSM fit	0.1%	0.6%	38.0%	61.3%	

One can also look at gaugino properties through precision observables.

Backup: Heavy singlino, case 1, $\mu < M_1 < M_2$

[GeV]	NMSSM
M ₁	450
M ₂	1600
M ₃	1600
taneta	27
$\mu_{\it eff} = \lambda x$	120
A_{λ}	3000
A_{κ}	-30
A_{u_3}	3300.
$ \begin{array}{c} A_{u_3} \\ A_{d_3} \\ A_{e_3} \end{array} $	2000.
A_{e_3}	2000
M _I	300.
Me	300.
M_Q	1500.
M _u	1500.
M _d	1500.

Backup: Heavy singlino, case 1, $\mu < M_1 < M_2$

Detecting $\tilde{\chi}^0_3$ at LHC/TeV-LC can point to the NMSSM; while in the MSSM $m_{\tilde{\chi}^0_3}$ =454 GeV, in the NMSSM:

Backup: Heavy singlino, case 2, $M_2 < M_1 < \mu$

[GeV]	NMSSM
M ₁	240
M ₂	105
M ₃	600
$tan \beta$	9.2
$\mu_{\it eff} = \lambda x$	505
A_{λ}	3700
A_{κ}	-40
A_{u_3}	3700.
A_{d_3}	2500.
A_{e_3}	1500
$M_{l_{1,2}}$	300.
M_{l_3}	500.
$M_{e_{1,2}}$	300.
M_{e_3}	500.
$M_{Q_{1,2}}$	1500
M_{Q_3}	1800.
M_{u_3}	1500.
M_{d_3}	1500.

Backup: possible UV completion for quiver model

Backup: coupling enhancement in the vector Higgs case, LHC vs ILC

The expected precisions on the Higgs couplings and total width at LHC and ILC are obtained from a constrained 7-parameter fit assuming no non-SM production or decay modes.

The fit assumes universality:

$$c_u \equiv c_t = c_c, \ c_d \equiv c_b = c_s, \ c_l \equiv c_{ au} = c_{\mu}$$

$$c_b^{
m vector} \simeq \left(1 - rac{m_h^2}{m_H^2}
ight)^{-1} \left(1 + rac{[g_2^2(1+\Delta_2) + rac{3}{5}g_1^2(1+\Delta_1)]v^2}{4m_H^2}
ight)$$

Backup: coupling enhancement in the chiral Higgs case, LHC vs ILC

The expected precisions on the Higgs couplings and total width at LHC and ILC are obtained from a constrained 7-parameter fit assuming no non-SM production or decay modes.

The fit assumes universality:

$$c_u \equiv c_t = c_c, \ c_d \equiv c_b = c_s, \ c_l \equiv c_\tau = c_\mu$$

$$c_b^{
m chiral} \simeq \left(1 - rac{m_h^2}{m_H^2}
ight)^{-1} \left(1 + rac{[g_2^2(1-\Omega_2) + rac{3}{5}g_1^2(1-\Omega_1)] v^2}{4m_H^2}
ight)$$