

## A Flavor Kit for BSM models

Florian Staub
BCTP Bonn

in collaboration with

W. Porod, A. Vicente

Helmholtz-Alliance Linear Collider Forum Bonn, 30. April 2014



## Introduction

- ▶ New physics will not only show up in cross sections
  - → interplay between different searches for new physics
- ▶ BSM gives often new contributions to flavor observables



### Introduction

- New physics will not only show up in cross sections
  - → interplay between different searches for new physics
- ▶ BSM gives often new contributions to flavor observables
- ► Several public codes available to calculate flavor observables

| 3.5 . |    | 0     |      |   |
|-------|----|-------|------|---|
| Μп    | cr | l Ime | egas | ; |

- ► NMSSM-Tools
- SPheno
- superiso
- SuseFlav
- SUSY\_Flavor
- •

[Belanger, Boudjema, Pukhov, Semenov]

[Ellwanger, Hugonie]

[Porod, FS]

[Mahmoudi]

[Chowdhury, Garani, Vempati]

[Rosiek, Chankowski, Dedes, Jager, Tanedo]



### Introduction

- New physics will not only show up in cross sections
  - → interplay between different searches for new physics
- ▶ BSM gives often new contributions to flavor observables
- ► Several public codes available to calculate flavor observables

| ▶ MicrOme | gas | [Belange |
|-----------|-----|----------|

- ► NMSSM-Tools
- SPheno
- superiso
- SuseFlav
- SUSY\_Flavor

#### [Belanger, Boudjema, Pukhov, Semenov]

[Ellwanger, Hugonie]

[Porod, FS]

[Mahmoudi]

[Chowdhury, Garani, Vempati]

[Rosiek, Chankowski, Dedes, Jager, Tanedo]

## Restrictions

- ► Work only for specific models
- ► Hardly possible for user to extent list of calculated observables



## Calculation of Flavor observables in a nutshell

To calculate flavor observables in a given model one needs

- 1. Expressions for vertices and masses
- 2. Expressions for Wilson coefficients
- 3. Expressions for observables
- 4. Numerical values for everything



### Calculation of Flavor observables in a nutshell

To calculate flavor observables in a given model one needs

- 1. Expressions for vertices and masses  $\rightarrow$  SARAH
- 2. Expressions for Wilson coefficients → FeynArts/FormCalc
- 3. Expressions for observables  $\rightarrow$  literature
- 4. Numerical values for everything  $\rightarrow$  SPheno



## Calculation of Flavor observables in a nutshell

To calculate flavor observables in a given model one needs

- 1. Expressions for vertices and masses  $\rightarrow$  SARAH
- 2. Expressions for Wilson coefficients → FeynArts/FormCalc
- 3. Expressions for observables  $\rightarrow$  literature
- 4. Numerical values for everything  $\rightarrow$  SPheno

Let's combine the different tools!



### SARAH and SPheno

## 'Spectrum Generator Generator'

SARAH writes Fortran source-code using the obtained information about vertices, masses, RGEs in a given model. This provides new SPheno modules which calculate

- Two-loop RGEs
- One-loop corrected mass spectrum
- Decay widths and branching ratios
- ► Flavor observables (more in a second)

in a wide range of BSM models.

→ Implementation of new models in SPheno in a modular way without the need to write any line of source code by hand.



#### FlavorKit

- So far SARAH had already included some flavor observables in the SPheno output
- ► The necessary expressions for the amplitudes have been hard-coded in SARAH
- → It has been difficult and time consuming to implement new observables



#### FlavorKit

- So far SARAH had already included some flavor observables in the SPheno output
- ► The necessary expressions for the amplitudes have been hard-coded in SARAH
- → It has been difficult and time consuming to implement new observables

#### FlavorKit

The calculation of flavor observables is now based on external files which . . .

- ▶ ... provide the generic expressions of the Wilson coefficients
- ▶ ... the formulae to combine coefficients to observables

Both can be extended by the user.



## New observables

To calculate new observables the user has to provide two files

A steering file:
 defines the necessary operators and the position in the
 SPheno spectrum file



## New observables

To calculate new observables the user has to provide two files

- A steering file:
   defines the necessary operators and the position in the
   SPheno spectrum file
- ► A Fortran file: gives Fortran code to combine operators to observables



## New observables

To calculate new observables the user has to provide two files

- A steering file: defines the necessary operators and the position in the SPheno spectrum file
- ▶ A Fortran file: gives Fortran code to combine operators to observables

Both files have to be put into the FlavorKit subdirectory of SARAH

ightarrow The observables are included automatically in the SPheno output.



2

4 5

6 7

8

## Example $l \to l_j \gamma$ : Steering file

#### The Steering file reads

```
NameProcess = "LLpGamma";

NameObservables = {{muEgamma, 701, "BR(mu->e gamma)"},
{tauEgamma, 702, "BR(tau->e gamma)"},
{tauMuGamma, 703, "BR(tau->mu gamma)"}};

NeededOperators = {K2L, K2R};

Body = "LLpGamma.f90";
```

#### K2L, K2R are the coefficients of the dipole operator

$$\mathcal{L}_{\ell\ell\gamma} = e \,\bar{\ell}_{\beta} \left[ i m_{\ell_{\alpha}} \sigma^{\mu\nu} q_{\nu} \left( K_{2}^{L} P_{L} + K_{2}^{R} P_{R} \right) \right] \ell_{\alpha} A_{\mu} + h.c.$$



# Example $l \to l_j \gamma$ : Fortran file

```
Real(dp) :: width
    Integer :: i1, gt1, gt2
3
   Do i1 = 1.3
   If (i1.eq.1) Then
                            ! mu −> e gamma
6
   gt1 = 2
    gt2 = 1
    Elseif (i1.eq.2) Then !tau \rightarrow e gamma
    . . .
10
    End if
11
12
    width = 0.25_dp*mf_I(gt1)**5*(Abs(K2L(gt1,gt2))**2 &
13
               & +Abs(K2R(gt1,gt2))**2)*Alpha
14
15
    If (i1.eq.1) Then
16
     muEgamma = width / (width+GammaMu)
    Elseif (i1.eq.2) Then
17
18
    End if
19
20
    End do
```



## Example $l \to l_j \gamma$ : Result

After running SARAH and compiling the SPheno module the spectrum files produced by SPheno include the new observable:

```
# SUSY Les Houches Accord 2 - NMSSM
# SPheno module generated by SARAH
...
Block FlavorKitLFV # lepton flavor violating observables
701 1.61451131E-14 # BR(mu->e gamma)
702 5.67628390E-16 # BR(tau->e gamma)
703 2.15514014E-17 # BR(tau->mu gamma)
8
```

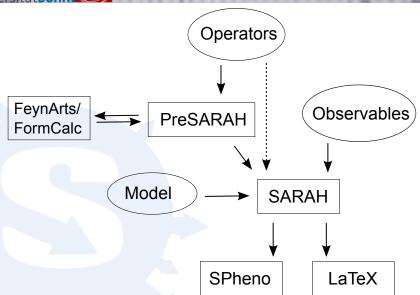


## New operators

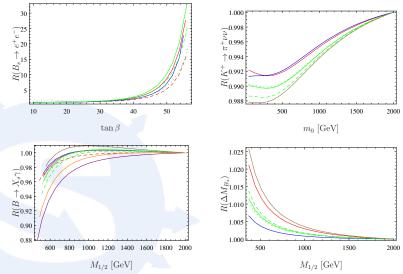
The generic expressions for the coefficients of new operators can be calculated with an additional package (PreSARAH):

- Easy way to define operators and color flow
- ► Uses FeynArts/FormCalc to calculate expressions
- Writes all necessary files for SARAH




## New operators

The generic expressions for the coefficients of new operators can be calculated with an additional package (PreSARAH):


- Easy way to define operators and color flow
- Uses FeynArts/FormCalc to calculate expressions
- Writes all necessary files for SARAH

```
NameProcess="2d2L";
2
3
    Considered Process = "4 Fermion":
    FermionOrderExternal = \{2,1,4,3\};
5
    NeglectMasses = \{1, 2, 3, 4\};
6
    ExternalFields = {DownQuark, bar[DownQuark],
8
                                  ChargedLepton, bar [ChargedLepton] };
9
    AllOperators = \{ \{OddIISLL, Op[7]. Op[7]\}, (* [d PL d][I PL I] *) \}
10
                    {OddIISRL,Op[6].Op[7]}, (* [d PR d][I PL I] *)
11
12
13
```









FlavorKit, SPhenoMSSM (dashed), SPheno 3.3 SUSY\_Flavor 1, SUSY\_Flavor 2, MicrOmegas, SuperIso



## Conclusion

- ► The FlavorKit allows the user to implement easily new operators/observables in SARAH
- ► SARAH creates source code for SPheno to calculate the observables for a given model
- We made use of this to (re-) implement in SARAH
  - ▶ Br $(l_i \rightarrow l_j \gamma)$ , Br $(l \rightarrow 3l')$ , Br $(Z \rightarrow ll')$
  - $ightharpoonup CR(\mu e, A), Br(\tau \to l + P)$
  - ▶ Br $(B \to X_s \gamma)$ , Br $(B_{s,d}^0 \to l\bar{l})$ , Br $(B \to sl\bar{l})$ , Br $(K \to \mu\nu)$
  - ▶ Br( $B \to q \nu \nu$ ), Br( $K^+ \to \pi^+ \nu \nu$ ), Br( $K_L \to \pi^0 \nu \nu$ )
  - $ightharpoonup \Delta M_{B_s,B_d}$ ,  $\Delta M_K$ ,  $\epsilon_K$ ,  $\text{Br}(B \to K \mu \bar{\mu})$
  - ▶ Br( $B \to l\nu$ ), Br( $D_s \to l\nu$ )
- ► FlavorKit will be included in SARAH 4.2.0 (Beta-Version available)

(http://sarah.hepforge.org/)