Status of WHIZARD

Wolfgang Kilian

U Siegen

LC Forum, Bonn, April 2014

(Talk at AWLC14 will be given by T. Ohl)

WHIZARD in a Nutshell

WHIZARD is a universal event generator for elementary processes at colliders:

- ▶ e^+e^- : LEP and TESLA/NLC \Rightarrow ILC, CLIC, ...
- pp: Tevatron \Rightarrow LHC, ...

It contains

- 1. O'Mega: Automatic matrix elements for arbitrary elementary processes, supports SM and many BSM extensions
- 2. Phase-space parameterization module
- 3. VAMP: Generic adaptive integration and (unweighted) event generation
- Intrinsic support or external interfaces for: Feynman rules, beam properties, cascade decays, shower, hadronization, analysis, event file formats, etc., etc.
- 5. Free-format steering language SINDARIN

Milestones

1.0 Project started around 1999: Studies for electroweak multi-particle processes at TESLA (W, Higgs, Z)

Event samples for LC studies at SLAC

- 1.9 Full SM w/ QCD, beam properties, SUSY/BSM, event formats
- 2.1 QCD shower+matching, FeynRules support, internal density-matrix formalism (cascade decays), language SINDARIN as user interface, OpenMP parallelization, ... (production version)
- 2.2 Major refactoring of internals (same user interface), event sample reweighting, inclusive processes, improved LC beam description (current status: final polishing, updating manual)
- Plan Further improve ILC support; NLO + matching; improve user interface ⇒ adapt to specific needs of user groups

The WHIZARD Event Generator – Release 2.1

- Multi-Channel Monte-Carlo integration
- Efficient phase space and event generation (weighted & unweighted)
- Optimized tree-level matrix elements (O'Mega)
 - $e^+e^- \rightarrow t\bar{t}H \rightarrow b\bar{b}b\bar{b}jj\ell\nu$ (110,000 diagrams)
 - $e^+e^- \rightarrow ZHH \rightarrow ZWWWW \rightarrow bb + 8j$ (12,000,000 diagrams)
 - $pp \rightarrow \ell\ell + nj, n = 0, 1, 2, 3, 4, \dots$ (2,100,000 diagrams with 4 jets + flavors)
 - $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 bbbb$ (32,000 diagrams, 22 color flows, $\sim 10,000$ PS channels)
 - $pp \rightarrow VVjj \rightarrow jj\ell\ell\nu\nu$ incl. anomalous TGC/QGC
 - Test case $gg \rightarrow 9g$ (224,000,000 diagrams)

WHIZARD 2.1.1 release: 2012, Sept. 18 Old series: WHIZARD 1.97 (development stopped with 1.94)

WHIZARD team: F. Bach, B. Chokoufe, W. Kilian, T. Ohl, J. Reuter, M. Sekulla, C. Weiss, D. Wiesler

 Web address:
 http://projects.hepforge.org/whizard

 Standard Reference:
 WK/Ohl/Reuter, EPJC 71 (2011) 1742, arXiv:0708.4233

Hard matrix elements: particle types

Possible particle types

- Spin 0 particles
- Spin 1/2 fermions (Majorana and Dirac) Fermi statistics for both fermion-number conserving and violating cases
- Spin 1 particles
 - massive and massless
 - Unitarity and Feynman gauge
 - arbitrary R_ξ gauges
- Spin 3/2 particles (Majorana only, gravitinos)
- Spin 2 particles (massless and massive, gravitons)
- Dynamic particles vs. pure insertions
- Unphysical particles for Ward- and Slavnov-Taylor identities

WHIZARD – Overview over BSM Models

MODEL TYPE	with CKM matrix	trivial CKM
QED with e, μ, τ, γ	-	QED
QCD with d, u, s, c, b, t, g	-	QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge couplings	SM_ac_CKM	SM_ac
SM with anomalous top couplings	SMtop_CKM	SMtop
SM with WW resonances and unitarization	—	SSC
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos	-	MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models	—	PS/E/SSM
Littlest Higgs	-	Littlest
Littlest Higgs with ungauged $U(1)$	—	Littlest_Eta
Littlest Higgs with T parity	—	Littlest_Tpar
Simplest Little Higgs (anomaly-free)	-	Simplest
Simplest Little Higgs (universal)	—	Simplest_univ
3-site model	—	Threeshl
UED	-	UED
SM with Z'	-	Zprime
SM with gravitino and photino	—	GravTest
Augmentable SM template	—	Template

QCD Effects

WHIZARD 2: Color is treated exactly, color-flow formalism

[old event samples: color flow was inferred from kinematics]

Color in final state: several options

- 1. Partonic event files with color correlation, to be handled by external shower/hadronization (PYTHIA 6, PYTHIA 8, HERWIG)
- Internally linked PYTHIA 6 via Les Houches Interface (for color correlation) ⇒ automatic generation of showered/hadronized event files
- 3. WHIZARD's own internal shower (analytic shower) and internal PYTHIA hadronization
- 4. WHIZARD's own internal shower (analytic shower) and external hadronization
- Extra radiation: avoid double-counting
 - Matrix element for extra radiation + MLM matching scheme

Analytic Parton Shower

Reuter/Schmidt/Wiesler, JHEP 2012

- Analytic Parton Shower:
 - no shower veto: shower history is exactly known
 - allows reweighting and maybe more reliable error estimate
- validated against PYTHIA shower (tuning: assistance welcome!)

Analytic Parton Shower

Reuter/Schmidt/Wiesler, JHEP 2012

- Analytic Parton Shower:
 - no shower veto: shower history is exactly known
 - allows reweighting and maybe more reliable error estimate
- validated against PYTHIA shower (tuning: assistance welcome!)

More physics aspects/improvements in WHIZARD 2

• SINDARIN (Scripting INtegration, Data Analysis, Results display and INterfaces)

- steering: process definition, parameters, models, beam structure, scans/loops, conditionals, I/O, file formats, ...
- expressions: for cuts, scales, weights
- analysis: observables, plots, histograms

```
cuts = any 5 degree < Theta < 175 degree
        [select if abs (Eta) < eta_cut [lepton]]
cuts = any E > 2 * mW [extract index 2
        [sort by Pt [lepton]]]
```

- Decay cascades including full spin correlations
- FeynRules interface

Christensen/Duhr/Fuks/Reuter/Speckner, EPJC 72 (2012) 1990

- Event-dependent scales in PDFs and running α_s
- Anomalous couplings, resonances and unitarity in vector-boson scattering

News 2013/14: Towards 2.2.X

- status: public beta stage (feature complete), final polishing
- WHIZARD core: insert an extra abstraction layer, consistently separate interface from implementation
 - Replaceable modules with well-defined interface: matrix-elements, beam structure, phase space, integration, decays, shower, ...
 - Much easier to contribute new parts to the code
 - Framework for testing ideas and algorithms
 - Technical changes hidden from the user
- Models for BSM interactions of electroweak vector bosons (w/ light Higgs)
- Automatically compute decay chains, depending on the model

```
?auto_decays = true
unstable Z ()
```

Inclusive processes

```
process cpp = "e-", "e+" => "ch1+" + "ch2+", "ch1-" + "ch2-"
```

• Read event files, reweight and reanalyze

Technical Features

- WHIZARD 2: code basically rewritten, only Fortran 2003 (gfortran 4.7) and O' Caml
- Object-oriented implementation and clean modularization of code
- OpenMP parallelization
- Operation modes:
 - Dynamic linking (default mode) with on-the-fly generation of process code
 - Static linking (for batch clusters)
 - Library mode, callable from C/C++/Python/...
 - Interactive mode: WHIZARD works as a Shell WHISH
- Standard conformance: uses autotools: automake/autoconf/libtool
- test suite
- Version control (svn) at HepForge: use of ticket system and bug tracker
- Continuous integration system (jenkins) linked with svn repository

WHIZARD 2 – Installation and Run

- Download WHIZARD from http://www.hepforge.org/ archive/whizard/whizard-2.1.1.tar.gz and unpack it
- WHIZARD intended to be centrally installed on a system, e.g. in /usr/local (or locally on user account)
- Create build directory and configure
 External programs (LHAPDF, StdHEP, HepMC) might need flags
- make, make install
- Create SINDARIN steering file (in any working directory)
- Run whizard (in working directory)

O'Mega sell tests:
make check-TESTS
PASS: test_omega95
PASS: test_omega95_bispinors
PASS: test_qed_eemm
PASS: ects
PASS: ward
PASS: compare_split_function
PASS: compare_split_module
All 7 tests passed
WHIZARD self tests:
make check-am
make check-TESTS
PASS: empty.run
PASS: vars.run
PASS: md5.run
[]
XFAIL: errors.run
PASS: extpar.run
PASS: susyhit.run
PASS: libs.run
PASS: qedtest.run
PASS: helicity.run
PASS: smtest.run
PASS: defaultcuts.run
PASS: restrictions.run
PASS: decays.run
PASS: alphas.run
PASS: colors.run
PASS: cuts.run
PASS: lhapdf.run
PASS: ilc.run
PASS: mssmtest.run
PASS: models.run
PASS: stdhep.run
PASS: stdhep_up.run
All 53 tests behaved as expected (

WHIZARD Manual

Wolfgang Kilian,² Thorsten Ohl,³ Jürgen Reuter,⁴ Christian Speckner ⁵

- Contents
- Introduction
 - Disclaimer
 - Overview
 - About examples in this manual
- Installation
 - Package Structure
 - Prerequisites
 - Installation
 - · Working With WHIZARD
- Getting Started
 - Hello World
 - · A Simple Calculation
- SINDARIN: Overview
 - The command language for WHIZARD
 - SINDARIN scripts
 - Errors
 - Statements
 -

WHIZARD histograms

New completely general syntax in WHIZARD 2.x

$$p + p \rightarrow \tilde{u} + \tilde{u}^* \rightarrow \overline{\tilde{u}}_1 + u + \tilde{e}_{12}^+ + e^-$$

Full process:

$$p + p \rightarrow \tilde{u} + \tilde{u}^* \rightarrow \bar{\tilde{u}}_1 + u + \tilde{e}_{12}^+ + e^-$$

Factorized process w/ full spin correlations:

$$p + p \rightarrow \tilde{u} + \tilde{u}^* \rightarrow \bar{\tilde{u}}_1 + u + \tilde{e}_{12}^+ + e^-$$

Factorized process w/ classical spin correlations:

$$p + p \rightarrow \tilde{u} + \tilde{u}^* \rightarrow \bar{\tilde{u}}_1 + u + \tilde{e}_{12}^+ + e^-$$

Factorized process w/ no spin correlations:

Status of NLO development in WHIZARD

Proof-of-concept code in WHIZARD 2.1

by C. Speckner, support discontinued

New implementation under way for WHIZARD 2.2+

by C. Weiss

Build upon the refactored WHIZARD core, exchangeable modules

Simulating Linear Colliders (2.1)

- Predefined parameter sets (CIRCE) (250/350/500/1000/2000/3000 GeV)
- ► ISR, beamstrahlung, strong fields (CLIC)
- Exhaustive support for these effects in WHIZARD (collaboration with LC groups)
- Example $e^+e^- \rightarrow b\bar{b}$:

Simulating Linear Colliders (2.1)

- Predefined parameter sets (CIRCE) (250/350/500/1000/2000/3000 GeV)
- ► ISR, beamstrahlung, strong fields (CLIC)
- Exhaustive support for these effects in WHIZARD (collaboration with LC groups)
- Example $e^+e^- \rightarrow b\bar{b}$:

Simulating Linear Colliders (2.1)

- Predefined parameter sets (CIRCE) (250/350/500/1000/2000/3000 GeV)
- ► ISR, beamstrahlung, strong fields (CLIC)
- Exhaustive support for these effects in WHIZARD (collaboration with LC groups)
- Example $e^+e^- \rightarrow b\bar{b}$:

Luminosity spectrum picks up the Z resonance!

Simulating Linear Colliders (2.2)

Choose:

```
ILC parameter set(s) (CIRCE1)
```

```
beams = "e-", "e+" => circel => isr
$circel_acc = "ILC"
```

Read from beam-event data file

```
beams = "e-", "e+" => beam_events => isr
$beam_events_file = "guineapig_output.dat"
```

 CIRCE2: parameterizes GuineaPig output and transforms into unweighted beam-event generator (cf. T. Barklow's LumiLinker code for WHIZARD1)

Specific mappings efficiently handle s-channel resonances and on-shell $2 \to 1$ production (ISR radiative return)

Users' input is required!

Simulating Linear Colliders (2.2)

More options for beams:

Polarization (longitudinal, transversal, arbitrary)

```
beams = "e-", "e+"
beams_pol_density = @(-1), @(+1)
beams_pol_fraction = 80%, 40%
```

Asymmetric beams

beams_momentum = 100 GeV, 900 GeV

Crossing angle

beams_theta	=	0	degree,	10	degree
beams_phi	=	0	degree,	90	degree

All parameters can be looped over (in Sindarin input)

Polarization also accessible for final state (full correlations), just need a suitable event format ...

ILC/CLIC: Projects

- Up-to-date parameter sets for ILC/CLIC beamstrahlung spectra
- Distribution of ISR photons with p_T (in collinear/infrared limit)
- LCIO as event format (F. Gaede)
- Jets, shower, matching: Bijan Chokoufe
- Unitary models for WW scattering at high energies: Marco Sekulla
- Top-quark threshold (resummed + corrected): Fabian Bach
- Automatic inclusion of NLO effects: C. Weiss

Summary and Outlook

▶ WHIZARD 2 for LC and LHC physics

- Versatile, user-friendly tool
- Detailed implementation of ILC beam properties
- Steered via the HepForge page: http://projects.hepforge.org/whizard
- Expect continuous improvement

Thanks to all contributors (list is not exhaustive!)

- T. Barklow, P. Bechtle, M. Berggren, M. Beyer, H. Boschmann, F. Braam, R. Chierici,
- K. Desch, T. Kleinschmidt, M. Mertens, N. Meyer, K. Mönig, M. Moretti, H. Reuter, T. Robens,
- K. Rolbiecki, S. Rosati, A. Rosca, S. Schmidt, J. Schumacher, M. Schumacher,
- S. Schwertfeger, C. Speckner, C. Schwinn, M. Trudewind

Summary and Outlook

▶ WHIZARD 2 for LC and LHC physics

- Versatile, user-friendly tool
- Detailed implementation of ILC beam properties
- Steered via the HepForge page: http://projects.hepforge.org/whizard
- Expect continuous improvement

Open for Suggestions (please contact us!)