Status of the civil engineering design for the Kitakami site

Masanobu Miyahara

KEK Linear Collider Project Office

2014/2/17

DESY Seminar

Status of Civil Engineering Design in the Asian mountainous site

- Accelerator Tunnel
- Detector Hall Cavern

Accelerator tunnel in the mountain site

ILC Facility arrangement plan in the mountain site

Penetrations

Service Tunnel

Main Linac Tunnel Configuration

Beam tunnel

Accelerator Tunnel

Schematic layout in TDR

The tunnel standard section

In Japanese Single tunnel configuration

Main Linac cross section

Seikan Tunne

Euro

Tun

Lotschverg Tunnel

Hakkoda Tunnel

Comparative Study of the Construction scale

ILC-Project study by KEK-CFS

	LEP(LHC)	ILC
Number of Vertical Shaft (AT)	19, (<mark>6</mark>)	10
Total length of tunnel	32,600m <mark>6,500m</mark>	35,000m (MLT)
Surface Buildings	70, (<mark>30</mark>)	-
Surface area of Buildings	59,000m ² 28,000m ²	80,000 m²
Volume of Excavation	1,100,000m ³ 420,000m ³	2,610,000m ³
Volume of Concrete (underground)	230,000m ³ 125,000m ³	820,000m ³

* LEP&LHC data are based on Offer by Mr. John Osborne(CERN)

2014/2/17

DESY Seminar

... Construction Schedule Study ...

Precondition

Drill & Blast \longrightarrow Mucking

2014/2/17

Shotcrete

DESY Seminar

66kV CABLES

LINE OF EXCAVATION

Detector Hall Cavern in the mountain site

..... Detector Hall Cavern

Main linac

DESY Seminar

Comparison of Excavation Cross Section

Dimension of Underground Large Cavern in the world

Underground Power Station

Waldeck- II UPS

- Pumped-storage Hydroelectric Power Plant
- Waldeck-III?: under construction? \Rightarrow total 920MW?

Waldeck-II Construction

Bench-cut Excavation

CAVERN

Section through Cavern Complex at point 5

262

CMS cavern 53m long, 27m wide by 25m high

ML tunnel

DESY Seminar

Shinano-Ara

Study on Detector Hall access way in Kitakami site

We are investigating about the Access way for Asian region Detector Hall.

- **1.** Sloped Tunnel Access (based on TDR)
- 2. Vertical Shafts Access (as like CMS)
- 3. Tunnel & Shaft Access (New Scheme)
- I Main subjects for comparative study.
 - Cost & Construction schedule
 - Environmental Impact
 - Safety Issue (Evacuation)
 - Availability of Physical Experiments

Comparison cases

Geological condition and Detector depth

Comparison Study

Tunnel access	Shaft access	Tunnel & Shaft access	
Assembly Yard Upper A/T Access/T D11m Grad7%	Assembly Yard <u>5 Shafts</u> - Main Shaft ILD Shaft - SiD Shaft - Z EV Shaft	Upper A/T DH Upper A/T - Main Shaft - 2 EV Shafts	
1 Access Tunnel (Large size)	5-Shafts	1 Access Tunnel (mid size) & 3 Shafts	
Detector assembling is mainly inside of Detector Hall.	Detector assembling is mainly on-ground.	Detector assembling is mainly on-ground.	
Location of DH & assembly yard can be selected individually.	Location must be satisfied on ground social condition and geological condition.	Location must be satisfied on ground social condition and geological condition.	
All of personnel and machines must use Vehicles for entering and leaving.	All of personnel and machines must use Winches and Elevators .	Both of Vehicle and Elevator are available for entering and leaving.	
Evacuation route is limited to DH Access tunnel.	Evacuation route is limited to shaft way.	Both of Tunnel and shaft are available for <u>evacuation route</u> .	
Cost & Schedule under study.			

Summary

Subject for the next several years

Toward the Engineering Design

- Facility design depending on the KITAKAMI site
- Consistency with the machine Layout & Installation
- Planning of the Central Campus & Housing

Field Survey for the final design

- Environmental impact assessment
- Topographical survey
- Geological survey & Bedrock investigation

Thank you for listening